2401_86086758
码龄160天
关注
提问 私信
  • 博客:5,393
    5,393
    总访问量
  • 3
    原创
  • 172,358
    排名
  • 91
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2024-06-29
博客简介:

2401_86086758的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    18
    当月
    0
个人成就
  • 获得90次点赞
  • 内容获得1次评论
  • 获得95次收藏
创作历程
  • 3篇
    2024年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

实现日中机器翻译模型---结合Transformer和PyTorch

实现日中机器翻译模型,结合Transformer和PyTorch,下面是一般关键步骤和技术:1. 数据准备首先,需要准备大量的日语和中文平行语料作为训练数据。这些数据应该是句子级别的对应,即每个日语句子对应一个对应的中文翻译句子。可以使用公开可用的语料库,如TED演讲语料库、开放翻译数据等。2. 构建Transformer模型Transformer是一种强大的深度学习模型,特别适合处理序列到序列的任务,如机器翻译。
原创
发布博客 2024.06.29 ·
1823 阅读 ·
26 点赞 ·
0 评论 ·
38 收藏

一篇带你理解机器翻译

机器翻译是指利用计算机和相关算法自动将一种自然语言的文本翻译成另一种自然语言的过程。其目标是实现从一种语言到另一种语言的自动转换,使得人类无需手动进行翻译,即可获取多种语言之间的沟通和信息传递。机器翻译系统通常基于大量的语言学和统计学数据,以及机器学习算法来实现。其核心挑战包括语言之间的语法结构、词汇的多义性、上下文的理解以及文化差异等因素。近年来,随着深度学习技术的发展,特别是神经网络的广泛应用,神经机器翻译(NMT)成为了主流方法,取代了传统的基于规则或统计的方法。
原创
发布博客 2024.06.29 ·
1652 阅读 ·
26 点赞 ·
0 评论 ·
20 收藏

多层感知器

一、背景介绍 随着科技的不断发展,人工智能成为了当今世界的一个热点研究领域。人工智能的发展离不开机器学习的算法,而神经网络作为机器学习的一种重要算法,其在人工智能领域的应用日益广泛。多层感知器(MLP)是神经网络中的一种经典模型,自从1986年由Rumelhart等人提出以来,它已经在许多领域取得了显著的应用成果。本文将探讨多层感知器的理论基础、架构及其在神经网络中的应用,并对其进行实验与分析,以期为多层感知器的研究和应用提供一定的参考。 多层感知器的研究背景可追溯至20世纪
原创
发布博客 2024.06.29 ·
1915 阅读 ·
38 点赞 ·
1 评论 ·
37 收藏