一篇带你理解机器翻译

一、研究背景和意义

随着全球化进程的不断推进,语言交流的障碍成为人们在国际交往和合作中的一个重要问题。而机器翻译作为一种自动将一种语言翻译成另一种语言的技术,为解决这一问题提供了重要的手段。近年来,随着计算机科学、人工智能和语言学等领域的快速发展,机器翻译技术也取得了巨大的进步,逐渐成为人们生活和工作中不可或缺的一部分。

研究背景:

机器翻译的研究始于20世纪50年代,当时受限于计算机性能和语言学理论的不足,机器翻译主要是基于规则的方法,翻译效果并不理想。随着统计机器翻译的出现,机器翻译开始取得了实质性的进展。2002年,基于统计的机器翻译系统SMT被广泛应用,大大提高了翻译的准确性和效率。近年来,深度学习技术的快速发展,特别是神经机器翻译的出现,使得机器翻译取得了革命性的进展,逐渐成为人工智能领域的一个热点。

研究意义:

机器翻译的研究具有重要的理论和实际意义。首先,机器翻译的研究可以推动自然语言处理领域的发展。语言是人类智能的一个重要体现,通过对语言的研究,可以深化我们对人类智能的理解,为发展更高级的人工智能提供重要的启示。其次,机器翻译的研究可以促进跨文化交流和合作。在全球化的背景下,语言交流的障碍成为人们在国际交往和合作中的一个重要问题。机器翻译的研究可以提供有效的语言翻译工具,帮助人们克服语言交流的障碍,促进跨文化交流和合作。最后,机器翻译的研究可以带来实际的经济和社会效益。随着机器翻译技术的不断发展和应用,越来越多的领域开始采用机器翻译技术,如在线翻译服务、本地化与国际化等,为人们的生活和工作带来了极大的便利,同时也为相关产业的发展带来了巨大的商机。

最重要的还是机器翻译的研究具有重要的理论和实际意义,对于推动自然语言处理领域的发展、促进跨文化交流和合作以及带来实际的经济和社会效益都具有重要的作用。

二、机器翻译具体介绍

机器翻译是指利用计算机和相关算法自动将一种自然语言的文本翻译成另一种自然语言的过程。其目标是实现从一种语言到另一种语言的自动转换,使得人类无需手动进行翻译,即可获取多种语言之间的沟通和信息传递。

机器翻译系统通常基于大量的语言学和统计学数据,以及机器学习算法来实现。其核心挑战包括语言之间的语法结构、词汇的多义性、上下文的理解以及文化差异等因素。近年来,随着深度学习技术的发展,特别是神经网络的广泛应用,神经机器翻译(NMT)成为了主流方法,取代了传统的基于规则或统计的方法。

机器翻译的应用范围非常广泛,涵盖了网页翻译、多语种信息检索、跨语言沟通、文档翻译、语音翻译等多个领域。尽管其在处理复杂的语言现象和专业领域术语时还存在挑战,但随着技术的不断进步,机器翻译系统的质量和效率正在逐步提高,对全球化交流和信息传播起到越来越重要的作用。

我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

1、读取和预处理数据

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>' # 定义特殊的标记符号
os.environ["CUDA_VISIBLE_DEVICES"] = "0"# 设置环境变量,指定使用的GPU设备编号
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 根据是否有可用的GPU设备选择运行设备

print(torch.__version__, device)# 打印PyTorch版本号和选择的运行设备

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data) 

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

2、含注意力机制的编码器—解码器

我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

(1)编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

(2)注意力机制

我们将实现注意力机制中定义的函数𝑎a:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎a定义里向量𝑣v的长度是一个超参数,即attention_size

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

(3)含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

3、训练模型

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外和word2vec的实现中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

4、预测不定长的序列

我们实现最简单的贪婪搜索。

def translate(encoder, decoder, input_seq, max_seq_len): # 将输入序列按空格分割成单词,并添加结束符和填充符,确保长度为max_seq_len
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列转换为对应的索引序列,并构造成形状为(1, max_seq_len)的张量,表示一个样本
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]])  # batch=1
    # 获取编码器的初始状态,并对输入序列进行编码计算,得到输出和最终状态
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器的输入为起始符号,并获取解码器的初始状态
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []# 初始化输出序列的单词列表
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

5、 评价翻译结果

评价机器翻译结果通常使用BLEU。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为𝑛n的子序列的精度为𝑝𝑛pn。它是预测序列与标签序列匹配词数为𝑛n的子序列的数量与预测序列中词数为𝑛n的子序列的数量之比。举个例子,假设标签序列为𝐴A、𝐵B、𝐶C、𝐷D、𝐸E、𝐹F,预测序列为𝐴A、𝐵B、𝐵B、𝐶C、𝐷D,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0p1=4/5,p2=3/4,p3=1/3,p4=0。设𝑙𝑒𝑛labellenlabel和𝑙𝑒𝑛predlenpred分别为标签序列和预测序列的词数,那么,BLEU的定义为

其中𝑘k是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当𝑝𝑛pn固定在0.5时,随着𝑛n的增大,0.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.960.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.96。另外,模型预测较短序列往往会得到较高𝑝𝑛pn值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2k=2时,假设标签序列为𝐴A、𝐵B、𝐶C、𝐷D、𝐸E、𝐹F,而预测序列为𝐴A、𝐵B。虽然𝑝1=𝑝2=1p1=p2=1,但惩罚系数exp(1−6/2)≈0.14exp⁡(1−6/2)≈0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)  # 获取预测序列和标签序列的长度
    score = math.exp(min(0, 1 - len_label / len_pred))  # 初始化BLEU分数,考虑句子长度惩罚因子
    for n in range(1, k + 1):  # 对于不同的n-gram计算BLEU分数
        num_matches, label_subs = 0, collections.defaultdict(int)  # 初始化匹配数量和标签子序列字典
        for i in range(len_label - n + 1):  # 统计标签序列中各个长度为n的子序列出现次数
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):  # 统计预测序列中与标签序列匹配的子序列数量
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))  # 更新BLEU分数
    return score  # 返回计算得到的BLEU分数

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。

具体例子和结果如下所示:

  • 26
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值