一、总体介绍
实现日中机器翻译模型,结合Transformer和PyTorch,下面是一般关键步骤和技术:
1. 数据准备
首先,需要准备大量的日语和中文平行语料作为训练数据。这些数据应该是句子级别的对应,即每个日语句子对应一个对应的中文翻译句子。可以使用公开可用的语料库,如TED演讲语料库、开放翻译数据等。
2. 构建Transformer模型
Transformer是一种强大的深度学习模型,特别适合处理序列到序列的任务,如机器翻译。在PyTorch中,可以使用`torch.nn.Transformer`模块来构建Transformer模型。它包含了多个注意力头(attention heads)和位置编码,能够有效地捕捉长距离依赖关系。
3. 数据预处理
在将数据输入到Transformer之前,需要对数据进行预处理:
- 使用分词器(tokenizer)将日语和中文文本转换为模型可接受的输入表示。可以选择使用分词库如`nltk`、`jieba`等来进行分词。
- 将每个句子转换为对应的索引序列,并添加起始(<sos>)和结束(<eos>)标记,以便模型了解句子的起始和终止。
4. 构建数据加载器(DataLoader)
使用PyTorch的`DataLoader`来加载和批处理预处理后的数据。这是训练过程中的一个关键步骤,能够有效地管理和处理大规模数据集。
5. 定义Transformer模型
在PyTorch中定义一个自定义的Transformer模型,包括编码器(Encoder)和解码器(Decoder),以及注意力机制(Attention)和前向传播逻辑。
6. 损失函数和优化器
选择适当的损失函数,如交叉熵损失(CrossEntropyLoss),并选择优化器,如Adam优化器,来调整模型参数以最小化损失函数。
7. 训练模型
利用准备好的训练数据和定义好的模型,通过多轮训练来优化模型参数。在每轮训练中,通过前向传播计算损失,然后反向传播更新模型参数。
8. 评估和推理
在训练过程中,定期使用验证集评估模型的性能。训练完成后,可以使用测试集来评估模型的泛化能力和翻译质量。
9. 部署和应用
完成训练和评估后,可以将模型部署为一个服务或应用程序,接受用户输入的日语文本并输出对应的中文翻译。
不过要确保在整个过程中保持数据的质量和一致性,特别是在数据清洗和预处理阶段。调整模型超参数(如学习率、批量大小等)以优化模型的性能。可以尝试使用预训练的Transformer模型(如BERT、GPT等)进行迁移学习,以提升模型的表现。
二、具体描述
1、导入必要库
import math
import torchtext
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from collections import Counter
from torchtext.vocab import Vocab
from torch.nn import TransformerEncoder, TransformerDecoder, TransformerEncoderLayer, TransformerDecoderLayer
import io
import time
import pandas as pd
import numpy as np
import pickle
import tqdm
import sentencepiece as spm
torch.manual_seed(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# print(torch.cuda.get_device_name(0))
2、获取并行数据集¶
在本教程中,我们将使用从JParaCrawl下载的日英并行数据集![http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl]该语料库被描述为“由NTT创建的最大的公开可用的英语-日语平行语料库”。它是通过大量抓取网络并自动对齐平行句子而创建的。”
在导入了所有的日语和英语数据后,我删除了数据集中的最后一个数据,因为它缺少一个值。总的来说,trainen和trainja中的句子数量为5,973,071,但是,出于学习目的,通常建议在一次使用所有数据之前对数据进行采样,并确保一切按预期运行,以节省时间。
# 使用加载的英文SentencePiece模型对句子进行分词,输入相应句子,参数 out_type='str' 指定输出的分词结果为字符串格式
en_tokenizer.encode("All residents aged 20 to 59 years who live in Japan must enroll in public pension system.", out_type='str')
3、准备记号化器
与英语或其他字母语言不同,日语句子不包含空格来分隔单词。我们可以使用JParaCrawl提供的标记器,它是使用SentencePiece为日语和英语创建的,您可以访问JParaCrawl网站下载它们,或者单击此处。
# 加载英文的SentencePiece模型,用于将英文句子进行分词
en_tokenizer = spm.SentencePieceProcessor(model_file='enja_spm_models/spm.en.nopretok.model')
# 加载日文的SentencePiece模型,用于将日文句子进行分词
ja_tokenizer = spm.SentencePieceProcessor(model_file='enja_spm_models/spm.ja.nopretok.model')
加载完标记器后,您可以测试它们,例如,通过执行下面的代码。
# 使用加载的英文SentencePiece模型对句子进行分词,输入相应句子,参数 out_type='str' 指定输出的分词结果为字符串格式
en_tokenizer.encode("All residents aged 20 to 59 years who live in Japan must enroll in public pension system.", out_type='str')
ja_tokenizer.encode("年金 日本に住んでいる20歳~60歳の全ての人は、公的年金制度に加入しなければなりません。", out_type='str')
4、构建TorchText Vocab对象并将句子转换为Torch tensors
使用标记器和原始句子,我们然后构建从TorchText导入的Vocab对象。这个过程可能需要几秒或几分钟,具体取决于数据集的大小和计算能力。不同的分词器也会影响构建vocab所需的时间,我尝试了几种其他的日语分词器,但SentencePiece对我来说似乎工作得很好,也足够快。
# 定义一个函数,用于根据给定的句子列表和分词器构建词汇表
def build_vocab(sentences, tokenizer):