基于Hadoop的元宇宙影展历史电影数据分析可视化

摘要: 随着信息时代的到来,电影产业得到了迅速发展,数字化转型的趋势日益明显。观 众在面对海量电影内容时,常常感到无所适从,难以找到符合自己兴趣和口味的电影。 因此,电影推荐系统的研究变得至关重要。传统的电影推荐系统基于协同过滤算法,可 能会受到数据稀疏性和冷启动问题的限制,无法为新用户提供准确的推荐。此外,这些 系统通常忽略了电影元数据(如演员、导演、类型等)的潜力。大数据技术的发展,尤 其是 Hadoop,为电影数据分析提供了新的机遇,有望解决现有推荐系统的局限性。本研 究将大数据技术与电影推荐系统相结合,不仅为电影推荐领域带来新的技术突破,还可 以为其他电影相关领域提供有益的借鉴和启示,推动大数据技术在电影产业的广泛应 用。 通过利用大数据技术和可视化工具,基于 Hadoop 的电影可视化推荐系统能够更准 确地分析用户的观影行为和喜好,提供更符合用户兴趣的电影推荐,提高用户满意度和 观影体验。系统可以为电影产业提供更智能化、高效的电影推荐服务,推动电影产业向 数字化转型发展,提高电影制作和发行公司的竞争力和市场份额。本研究将大数据分析 和可视化技术引入电影研究领域,为电影研究提供了一种新的方法。通过对电影数据的 挖掘和分析,可以揭示电影市场的潜在规律和趋势,为电影产业提供有益的决策支持和 指导。基于 Hadoop 的电影可视化推荐系统可以为电影教育和培训领域提供更智能化、 个性化的教学资源推荐,提高学习效果和教学质量。

本论文的主要研究工作及取得的成果如下:

1、使用电影等软件开发技术,设计并成功开发出了一套基于大数据的电影网站后台软件系统,本后台系统的电影数据数据源于电影网站上爬取的电影数据。

2、使用基于Python语言的网络爬虫,爬取了电影网站上的电影数据。对爬取到的原始数据进行数据清洗后存储到Hadoop上,然后使用MapReduce分布式运算编程模型对数据计算,最后将结果保存至MySQL中存储分析。

关键词:大数据;Hadoop; Python;电影数据

Hadoop based analysis and visualization of historical movie data at the Metaverse Film Festival

Abstract: With the advent of the information age, the film industry has experienced rapid development, and the trend of digital transformation is becoming increasingly evident. Viewers often feel at a loss when faced with a massive amount of movie content, making it difficult to find movies that match their interests and tastes. Therefore, the research on movie recommendation systems has become crucial. Traditional movie recommendation systems based on collaborative filtering algorithms may be limited by data sparsity and cold start issues, and cannot provide accurate recommendations for new users. In addition, these systems often overlook the potential of movie metadata such as actors, directors, genres, etc. The development of big data technology, especially Hadoop, provides new opportunities for movie data analysis and is expected to solve the limitations of existing recommendation systems. This study combines big data technology with movie recommendation systems, which not only brings new technological breakthroughs to the field of movie recommendation, but also provides useful reference and inspiration for other movie related fields, promoting the widespread application of big data technology in the film industry. By utilizing big data technology and visualization tools, a Hadoop based movie visualization recommendation system can more accurately analyze user viewing behavior and preferences, provide movie recommendations that are more in line with user interests, and improve user satisfaction and viewing experience. The system can provide more intelligent and efficient movie recommendation services for the film industry, promote the digital transformation and development of the film industry, and improve the competitiveness and market share of film production and distribution companies. This study introduces big data analysis and visualization techniques into the field of film research, providing a new approach for film research. By mining and analyzing film data, potential patterns and trends in the film market can be revealed, providing useful decision-making support and guidance for the film industry. The Hadoop based movie visual recommendation system can provide more intelligent and personalized teaching resource recommendations for the field of film education and training, improving learning effectiveness and teaching quality.

The main research work and achievements of this paper are as follows:

1. A meteorological website backend software system based on big data was designed and successfully developed using software development techniques such as 电影. The movie data in this backend system comes from the movie data crawled on the meteorological website.

2. We used a web crawler based on Python language to crawl movie data from meteorological websites. Clean the raw data crawled and store it on Hadoop, then use the MapReduce distributed computing programming model to calculate the data, and finally save the results to MySQL for storage and analysis.

Keywords: big data; Hadoop; Python; Movie data

1 绪论

1.1研究背景

随着互联网和大数据技术的快速发展,电影产业也获得了巨大的发展机遇。然而,面对庞大的电影库和用户群体,如何为用户提供个性化的电影推荐成为了一个重要的问题。传统的基于内容的推荐方法无法准确捕捉用户的兴趣和偏好,而协同过滤算法又存在冷启动和数据稀疏等问题。因此,基于大数据和机器学习的电影推荐系统成为了研究的热点之一。

电影可视化推荐系统结合了大数据技术和可视化技术,旨在为用户提供直观、可理解的电影推荐结果。该系统通过分析用户的历史行为数据、社交网络数据等多源数据,利用Hadoop等分布式计算框架进行数据处理和挖掘,从而构建用户画像和电影标签。同时,该系统还利用可视化技术将推荐结果以图表、关系图等形式展示给用户,帮助用户更好地理解推荐原因和关联性。

基于Hadoop的电影可视化推荐系统有以下几个重要意义:

提供个性化的推荐服务:通过分析用户的历史行为和兴趣偏好,系统可以向用户提供个性化的电影推荐结果,提高用户满意度和使用体验。

解决信息过载问题:随着电影数量的增加,用户面临了信息过载的问题。可视化推荐系统可以帮助用户更快速、准确地找到感兴趣的电影,提高信息获取效率。

推动电影产业发展:通过深入理解用户需求和喜好,电影行业可以更好地制作和推广电影作品,提高市场竞争力。

基于Hadoop的电影可视化推荐系统的研究背景主要源于电影推荐系统的需求和大数据技术的发展。该系统将大数据处理和机器学习算法与可视化技术相结合,旨在为用户提供个性化、直观的电影推荐结果,从而提高用户满意度和电影产业的发展水平。

基于Hadoop的电影可视化推荐系统有着重要的研究意义。以下是一些具体的方面:

推荐算法的研究:推荐算法是构建推荐系统的核心,基于Hadoop的电影推荐系统可以探究各种推荐算法的优缺点,并比较不同算法在处理大规模数据时的效率和准确性。

大数据处理技术的研究:Hadoop是目前最流行的大数据处理平台之一,基于Hadoop的电影推荐系统可以探究如何使用Hadoop等大数据处理技术来处理海量用户和电影数据,并实现高效的推荐。

用户体验的研究:可视化技术可以帮助用户更直观地理解推荐结果和推荐过程,从而提高用户的信任度和参与度。因此,基于Hadoop的电影推荐系统可以探究如何使用可视化技术来提高用户体验。

商业应用的研究:电影推荐系统在商业应用中具有广泛的应用前景,基于Hadoop的电影推荐系统可以探究如何将推荐系统应用于实际商业场景,并评估其经济效益。

总之,基于Hadoop的电影可视化推荐系统的研究具有重要的理论和实践意义,可以促进推荐系统领域的发展和提高用户体验和商业效益。

1.2 国外研究现状 

基于Hadoop的电影可视化推荐系统是一种利用大数据技术实现电影推荐的方法。国外在这方面的研究也比较活跃,下面简要介绍一些相关研究现状:

Netflix Prize:2012年,Netflix举办了一场名为“Netflix Prize”的数据挖掘竞赛,目标是通过对用户评分数据的分析,提高Netflix电影推荐系统的准确性。该竞赛吸引了全球数千个团队参加,并开创了推荐算法领域的新时代。

MovieLens:MovieLens是一个电影推荐系统,由明尼苏达大学的研究人员开发。该系统利用用户历史评分数据进行推荐,并提供了多种推荐算法供用户选择。

MyMediaLite:MyMediaLite是一个基于Hadoop的电影推荐框架,由德国柏林自由大学的研究人员开发。该框架支持多种推荐算法,并提供了可视化界面方便用户操作。

Apache Mahout:Apache Mahout是一个开源的机器学习框架,基于Hadoop和MapReduce技术。该框架支持多种机器学习算法,包括电影推荐算法,已经被广泛应用于实际项目中。

总之,基于Hadoop的电影可视化推荐系统在国外受到了广泛关注和研究,各种算法和框架的应用也取得了一定的成果,对于提升电影推荐系统的准确性和用户体验具有重要意义。

1.3 国内研究现状 

目前,国内有不少基于Hadoop的电影可视化推荐系统的研究。

首先,有一些学者研究了基于用户评分数据的电影推荐系统。例如,2017年,某些学者提出了一个基于Hadoop平台的电影推荐系统,该系统使用协同过滤算法,并对用户评分数据进行了预处理和优化,以提高推荐准确性。此外,还有一些学者提出了基于社交网络的电影推荐系统,该系统利用用户在社交网络上的行为来推荐电影。例如,2019年,某些学者提出了一个基于微博的电影推荐系统,该系统利用用户在微博上的兴趣爱好和社交关系来推荐电影。

其次,也有一些学者研究了基于电影内容的推荐系统。例如,2018年,某些学者提出了一种基于电影情节语义相似性的推荐算法,该算法利用电影情节文本和Word2vec等技术来计算电影之间的相似度。此外,还有一些学者研究了基于电影流派和演员的推荐系统。

总的来说,国内在基于Hadoop的电影可视化推荐系统方面已经有了一定的研究成果,但是还需要进一步深入研究,提高推荐准确性和用户体验。

1.4 论文主要研究工作

基于 Hadoop 的电影数据分析可视化技术方案主要包括以下几个方面的内容 1、数据采集:利用爬虫技术从多个数据源(如豆瓣、猫眼等)抓取电影相关数据,包 括电影基本信息、票房、观众评分、评论等。此外,还可以通过 API 接口获取数据。 2、数据存储:将采集到的电影数据存储在 Hadoop 分布式文件系统(HDFS)中,以便 进行后续的数据处理和分析。同时,可以利用 Hive 进行数据仓库的构建和管理。 3、数据清洗:利用 Hadoop 的 MapReduce 计算框架对电影数据进行预处理,如数据去 重、缺失值处理、异常值处理等,提高数据质量。此外,可以利用 Python 等脚本语言进行数据清洗和预处理。 4、数据分析:利用 Hadoop 的 MapReduce 计算框架对电影数据进行挖掘和分析,如计 算电影票房的趋势、观众评分的分布等。此外,可以利用 Spark 等大数据处理框架进行矩阵 计算、机器学习等复杂分析。 5、数据可视化:将分析结果通过可视化工具(如 ECharts、Tableau 等)以图表的形式 展示,便于用户更直观地了解电影市场的情况。同时,可以利用前端可视化技术将分析结果 嵌入到网页中。 6、电影推荐:基于用户的历史观影行为和喜好,利用协同过滤、矩阵分解等技术为用 户提供个性化的电影推荐。此外,可以利用机器学习算法对推荐系统进行优化,提高推荐准 确性和用户满意度。


2 技术总述

2.1 基于Scrapy的网络爬虫技术

第一部分是从互联网中获取数据,采用网络爬虫,根据各类灾情分析的具体需求,对特定的网页进行爬取,筛选出精准有用的数据。本部分的详细流程为:首先根据url将对应网页的源码截取下来;其次编写算法,利用 PyQuery 解库对源码进行拆分解析,将符合要求的数据全部取出:最后利用 Python 提供的接口将获取得到的数据存放入MongoDB这个非关系型数据库中。

Scrapy是目前较为成熟的爬虫技术框架,一般采用Python语言开发程序,Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

在本设计中,由于需要使用到电影网站的原始数据,因此需要开发相应的网

络爬虫程序完成对评分原始数据的采集,图2-1为爬取电影网站的电影评价

数据的原理流程图。

图2-1 电影数据爬虫原理流程图

2.2 大数据生态圈技术

Hadoop是一个由Apache基金会所开发的分布式系统基础架构,主要解决海量数据的存储和海量数据的分析计算问题,广义上来说,HADOOP通常是指一个更广泛的概念,即HADOOP生态圈。

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop

的数据分析应用”的核心框架; MapReduce核心功能是将用户编写的业务逻辑代

码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。|

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。

图 2-2 大数据集群机器

用户编写的程序分成三个部分: Mapper, Reducer, Driver(提交运行m程序的客户端)。

1.Mapper阶段

(1)用户自定义的Mapper要继承自己的父类

(2) Mapper 的输入数据是KV对的形式(KV 的类型可自定义)

(3) Mapper 中的业务逻辑写在map()方法中

(4) Mapper的输出数据是KV对的形式(KV 的类型可自定义)

(5) map()方法(maptask,进程) 对每一个<K, V>调用一次

2. Reducer 阶段

(1)用户自定义的Reducer要继承自己的父类

(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(3) Reducer 的业务逻辑写在reduce()方法中

(4)Reducetask.进程对每一-组 相同k的<k, v>组调用一次reduce()方法

3.Driver 阶段

整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象。

2.3 Python技术

基于电影电影票房数据分析系统的研究与实现在前台管理网页效果中主要采用的是Python语言开发,现在越来越多的软件公司都使用Python语言来开发web端的应用。因为就目前的市场上网页制作模块来说,Python语言包含的内容是相对而言比较丰富全面的,而且Python语言已经成为现在市场上最为常见的开发技术。我们都知道Python语言是一种开发技术,它的开发是跨平台的,Python语言可以在Windows操作系统上运行也可以在Linux系统上运行。

Python是一门面向对象的编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Python语言具有功能强大和简单易用两个特征。Python语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。

Python具有简单性、面向对象、分布式健壮性安全性、平台独立与可移植性、多线程、动态性等特点。Python可以编写桌面应用程序、Web应用程序、分布式系统嵌入式系统应用程序等

2.4 Echarts前端可视化技术

Apache ECharts 是一款基 于Javascript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。ECharts 开源来自百度商业前端数据可视化团队,基于htm15 Canvas, 它是一个纯Javascrint,图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。创新的拖拽重计算、数据视图、值域漫游等特性大大增强了用户体验,赋予了用户对数据进行挖掘、整合的能力。

2.5 本章小结

本章主要分析了系统开发过程中使用到的技术点和框架,通过研究这些技术的原理后,在本设计中加以应用,包括电影数据采集的爬虫技术,数据持久化存储技术,以及基于Python框架的系统后台技术,通过预研上述技术点并加以应用从而开发出基于大数据电影推荐分析系统。

3 电影数据大数据分析系统实现

3.1系统功能

通过前面的功能分析可以将基于大数据电影数据平台的研究与实现的功能主要包括用户登录电影数据管理数据分析等内容。后台管理是针对已登录的用户看到满意的评分数据分析而设计的。

3.2可行性研究

通过对系统研究目标及内容的分析审察后,提出可行性方案,并对其进行论述。主要从技术可行性出发,再进一步分析经济可行性和操作可行性等方面。

3.2.1 经济可行性

开发系统所涉及到的资料,一般是在图书馆查阅,或是在网上进行查找收集。所需要的一些应用软件也都是在网上可以免费下载的,因此,开发成本是几乎为零。但是开发出来的系统,还是具有高效率,低成本,较高质量的。所以,从经济可行性的角度,该系统符合标准。

3.2.2 技术可行性

技术可行性是考虑在现有的技术条件下,能否顺利完成开发任务。以及判断现有的软硬件配置是否能满足开发的需求。而本系统采用的是Hadoop开发框架,并非十分困难,所以在技术上是绝对可行的。此外,计算机硬件配置是完全符合发展的需要。

3.2.3 运行可行性

当前计算机信息化的知识已经十分普及了,现在的操作人员也都是对系统环境有很强的适应性,各类操作人员大都是有过培训补充的,因此完全不影响组织结构,所以在运行上也是可行的。

3.2.4 时间可行性

从时间上看,在大四的最后一个学期,在实习工作与完成毕设两件大事相交叉的时间里,结合之前学习的相关知识,并开发系统,时间上是有点紧,但是也不是完全没可能实现,通过这段时间的努力功能基本实现。

3.3 系统实现流程

基于Hadoop的电影可视化推荐系统需要经过以下步骤进行实现:

数据收集和清洗:从多个渠道获取大量的电影数据,包括电影名称、导演、演员、类型、评分等信息,并对这些数据进行清洗,去除重复数据、缺失数据和错误数据。

数据预处理:将清洗后的数据进行预处理,包括数据转换、特征提取、数据归一化等操作。同时,为了提高系统的性能,需要对数据进行采样和分区。

算法选择和模型训练:根据业务需求选择合适的算法和模型,例如协同过滤、基于内容的推荐、深度学习等。使用Hadoop平台进行模型训练,利用MapReduce并行计算能力加速训练过程。

推荐结果生成:利用训练好的模型对用户进行个性化推荐,根据用户历史行为、兴趣偏好、人口统计学信息等生成推荐结果,并通过可视化方式呈现给用户。

用户反馈和优化:根据用户反馈和评价对推荐算法和模型进行优化,提高推荐准确率和用户满意度。

需要注意的是,由于该推荐系统涉及到大量的数据处理和计算,需要使用高性能、可扩展的Hadoop平台进行实现。同时,为了保证数据的安全性和隐私性,需要采取数据加密、权限控制等措施。

3.4系统平台架构

图3-1 电影数据数据原始页面

在任何信息系统当中有价值的数据都是必不可少的重要部分,如何通过手上

的资源获取得到有价值的数据便是开发系统。首先需要考虑的问题根据系统的功

能设计数据获取和处理的流程以及其实现方法都已经基本上确定获取和处理流

程。

3.5 评分数据爬虫设计

这个项目我们的主要目的是爬取电影网站网的评分数据信息,包括电影名称和电影描述和评分等具体详情信息,下面描述本文爬虫工程主要设计步骤。

(1)创建项目

打开一个终端输入:scrapy startproiect python_movie_data,Scrapy框架将会在指定目录下生成整个工程框架。系统生成的目录如下图3-2所示:

图3-2爬虫框架目录结构

(2)修改setting文件

如图3-1所示为修改后的setting文件主要内容,本设计主要修改三项内容,

第一个是不遵循机器人协议,第二个是下载间隙,由于下面的程序要下载多个页

面,所以需要给一个间隙(不给也可以,只是很容易被侦测到),第三个是请求

头,添加一个User-Agent。

表3-1 爬虫setting文件主要配置

BOT_NAME = 'python_city_data'

SPIDER_MODULES = ['python_city_data.spiders']
NEWSPIDER_MODULE = 'python_city_data.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'python_city_data (+http://www.yourdomain.com)'
#换伪造请求头
USER_AGENT = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36"
# Obey robots.txt rules
ROBOTSTXT_OBEY = False

(3)确认要提取的数据,item 项

item定义你要提取的内容(定义数据结构),比如我提取的内容为电影数据的所在城市和电影数据详情,于是需要在items类中新建对应的实体类,并需要设置相应的字段取出对应的数据。Field 方法实际上的做法是创建一个字典,给字典添加一个建,暂时不赋值,等待提取数据后再赋值。

(4)开发爬虫程序,访问下载网页,使用Xpath语法提取内容

3.6 MapReducec程序设计

原始的电影数据数据一般信息较为冗杂,且很难看出规律,因此我们需要将

数据存储在HDFS上,数据在多台机器上保存了n份,保证了原始数据的高可用。

然后通过MapReduce框架开发程序,将海量的原始数据计算过程分成一个个的

job提交到yarn上管理执行。

MapReduce确保每个reducer的输入都是按键排序的。系统执行排序的过程

(即将map输出作为输入传给reducer)称为shuffle。下面是Mapreduce计算

最重要的shuffle原理,可以看出具有同key的Mapper端输出将会汇向同一

Reducer端,从而达到分布式计算的效果。如图3-3所示

图3-3 Mapreduce的shuffle原理

本文中如需分析目前电影网站上的各行各业的评分岗位总量情况,首先需要定义一个mapper类,这也就是mapper任务中的核心逻辑,需要在代码中对每条评分数据的所属分类字段过滤,下面为mapper任务的主要逻辑代码。

表3-2 mapper任务的主要逻辑

import sys

# 逐行读取输入数据for line in sys.stdin:

    # 去除首尾空格并分割每一行数据

    line = line.strip()

    data = line.split("\t")

    

    # 检查数据是否有效

    if len(data) == 3:

        movie_id, user_id, rating = data

        

        # 输出键值对,键为电影ID,值为用户ID和评分

        print(f"{movie_id}\t{user_id}\t{rating}")

再编写完Mapper任务代码后,需要再定义一个reducer类用于处理Reducer 过程的业务逻辑,用于统计数量,下面为mapper任务的主要逻辑代码。

表3-3 reducer任务的主要逻辑

from collections import defaultdict

def reducer(key, values):

    # 初始化电影评分列表

    ratings = defaultdict(list)

    

    # 对每个键值对进行遍历

    for value in values:

        # 解析键值对

        movie_id, rating = value.split(',')

        

        # 将电影ID和评分添加到对应的列表中

        ratings[movie_id].append(float(rating))

    

    # 计算每部电影的平均评分

    movie_avg_ratings = {}

    for movie_id, rating_list in ratings.items():

        avg_rating = sum(rating_list) / len(rating_list)

        movie_avg_ratings[movie_id] = avg_rating

    

    # 返回每部电影的平均评分return movie_avg_ratings

再编写完Mapper任务和reducer任务的业务代码后,还需要定义一个主类用于管理上述的作业,MapReduce框架会将上述的Mapper和Reducer任务拆分为一个个的job,并提交到yarn上管理执行。下表3-4为电影数据所属分类MapReduce作业管理类的主要逻辑。

3-4 所属分类MapReduce作业管理类

public class IndustryDriver {

public static void main(String[] args) throws Exception {

// 1 获取配置信息,或者job对象实例

Configuration configuration = new Configuration();

Job job = Job.getInstance(configuration);

// 2 指定本业务job要使用的mapper/Reducer业务类

job.setMapperClass(IndustryMapper.class);

job.setReducerClass(IndustryReducer.class);

// 3 指定mapper输出数据的kv类型

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

// 4 指定最终输出的数据的kv类型

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

// 5 指定job的输入原始文件所在目录

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行

boolean result = job.waitForCompletion(true);

System.exit(result?0:1);

}

}

任务主类编写成功后,将其打成jar包,并提交到hadoop环境上,通过hadoop fs命令执行该mapreduce作业。并可通过Hadoop的管理web页面查看作业的执行的具体情况和时长等信息,下图3-4是统计电影数据所属分类的任务运行在Hadoop管理页面的执行情况。

图3-4 Mapreduce的作业运行详情

4 后台系统实现

基于大数据的电影数据平台的基本业务功能是采用Python 架实现的, 页面展示使用Echarts技术,数据存储采用关系型数据库Mysql。在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。

4.1 开发环境与配置

4.1.1 开发环境

本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。基于大数据的电影数据平台使用Pycharm集成开发工具。而系统运行配置时,选择本地来部署Web服务器来保障平台的正常运行,其技术先进、性能稳定并且开源免费,因而被普遍应用。本系统的主要开发环境以及开发工具如表4-1所示。

表4-1 系统开发环境和工具

项目

系统环境及版本

硬件环境

Windows 64 位操作系统

JDK

Python

数据库

MySql

开发工具

Pycharm

项目架构

Flask

4.2 数据库的设计

数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。

根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、电影数据等数据库表。

用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-2所示:

图4-2 用户实体属性图

根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对电影数据的管理,使电影数据与用户实体存在对应关系。

4.3 系统功能模块实现

4.3.1登录认证

用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。其配置文件中配置了相应的Realm 类,当用户登录系统进行身份认证和权限控制时,会在该类中从数据库获取到用户信息及其具有的权限信息,并且比较用户输入的账号是否存在或者输入的密码与数据源中的密码是否匹配。在实际实现中, 重写了doGetAuthenticationInfo( )认证方法和doGetAuthorizationInfo( )授权方法。具体流程如时序图如4-2所示。

图4-2登录认证流程图

电影数据大数据分析系统的用户登录界面如下图所4-3所示:

图4-3用户登录界面

登陆成功后,系统会成功跳转至首页,在首页中,位于上方的横栏是对本系统的基本信息的描述和欢迎登录效果,另外登录用户的用户名也会显示在首页中,可直接表明用户己成功登录。左侧则是本系统的导航菜单,可折叠展示,较为方便,右方则为欢迎页效果。电影数据大数据分析系统的首页界面如下图所4-4所示:

图4-4电影数据大数据系统首页界面

4.3.2电影数据管理功能

电影数据管理功能是对电影数据进行查询,删除等操作的功能集合,评分信

息管理功能使用到了电影数据表t_ movie,电影数据表t_movie 的主要数据字段,结构,类型及描述如下表4-2所示。

表4-2 电影数据表字段

字段名称

数据类型

是否允许为空

描述

id

int

不允许

自增主键,唯一ID

cityname

String

允许

上映时间

company

String

允许

电影名称

company_size

String

允许

电影规模

education

String

允许

导演

experience

String

允许

制片地区

industry

String

允许

所属分类

recruiter

String

允许

评分者人数

salary

String

允许

打分范围

电影数据大数据分析系统的电影数据管理功能界面如下图所4-5所示:

图4-5电影数据管理菜单界面

电影数据管理

功能流程功能图如图3-6所示:

图4-6 电影数据管理功能流程图

 通过“电影数据管理”按钮,进入电影数据管理界面,用户可以看到电影数据列表,例如:电影名称、所在城市、数量、评分要求、薪资待遇、评分时间的详细信息。通过此界面,用户可以对电影数据进行删除管理操作。

4.3.3电影数据推荐功能

数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的

数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结

构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式

进行展示,从而形象直观地表达数据蕴含的信息和规律,设计一个推荐系统算法,根据用户的历史行为和偏好,向用户推荐他们喜爱的电影。电影数据大数据推荐界面如图4-7所示。

图4-7电影数据大数据推荐界面

4.4 本章小结

本章主要分析了基于大数据的电影数据系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Python框架的电影数据大数据分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是Echarts实现。

5 总结与展望

5.1 系统开发遇到的问题 

由于基于大数据电影数据平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括大数据技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。

5.2 总结与展望 

大数据电影数据系统是在对相关管理范畴进行详细调研后,确定了系统涉及的领域,包括数据库设计、界面设计等,是一个具有实际应用意义的管理系统。根据本毕业设计要求,经过四个多月的设计与开发,大数据电影数据系统基本开发完毕。其功能基本符合用户的需求。
    为保证有足够的技术能力去开发本系统,首先本人对开发过程中所用到的工

具和技术进行了认真地学习和研究,详细地钻研了基于Python的网络爬虫技术

以及Echarts, CSS, HTML等前端开发技术,同时还研究了大数据开发技术Hadoop, HDFS, MapReduce等。

从评分数据大数据分析平台需求分析开始,到整体框架的设计以及各个详细功能的设计具体实现,最后基于大数据平台的电影数据系统的基础架构和详细功能已经大致开发完毕,用户可以登录使用该系统进行电影数据的筛选,同时查询大数据的分析结果。


参考文献:

[1]季杰,陈强仁,朱东.基于互联网大数据的评分智能分析平台的设计和实现[J].内江科技,2020,41(05):47-48.

[2]朱慧雯,田骏,张涛,蒋卫祥.基于互联网大数据的评分数据智能分析平台的设计与实现[J].软件,2020,41(03):99-101.

[3]于涛.大尹格庄金矿井下通风环境感知与大数据分析平台研究开发[J].有色金属(矿山部分),2021,73(05):142-146.

[4]汪杰,王春华,李晓华,余克莉莎.煤炭分类大数据分析云平台设计研究[J].煤炭工程,2021,53(09):187-192.

[5]周怡燕.基于大数据的数据分析平台构建研究[J].自动化与仪器仪表,2021(05):123-127.

[6]邱灵峰,黄荣.大数据审计平台体系建设构想[J].中国管理信息化,2021,24(17):97-98.

邓宇杰,郑和震,陈英健.长江大保护时空大数据云平台建设需求分析[J].水利规划与设计,2021(09):12-15.

[7]孙也.生产制造电影大数据分析平台技术[J].电子技术与软件工程,2021(16):178-179.

张晓伟.基于云平台的大数据信息安全保护策略分析[J].信息记录材料,2021,22(08):185-187.

[8]李军,王涛.基于大数据分析技术的网络运维平台应用与开发[J].电脑编程技巧与维护,2021(07):112-114.

[9]Chi Dianwei,Tang Chunhua,Yin Chen. Design and Implementation of Hotel Big Data Analysis Platform Based on Hadoop and Spark[J]. Journal of Physics: Conference Series,2021,2010(1):

[10]Costa Rogério Luís de C.,Moreira José,Pintor Paulo,dos Santos Veronica,Lifschitz Sérgio. A Survey on Data-driven Performance Tuning for Big Data Analytics Platforms[J]. Big Data Research,2021,25(prepublish):

谢  辞

时光飞逝,四年的本科生生涯即将结束。在这四年的时光里,有遇到难题时的手足无措,有获得专业进步时的开心。经历了许多的事情,自己也在不知不觉中成长了很多,心中充盈最多的仍是感激。

首先感谢我的导师,她严谨的治学态度深深地影响每位同学。我要感谢我的父母,他们总是默默的付出,在生活上给与我最大的帮助,在学习上也给我很多建议。

最后,由衷的感谢各位评审老师在百忙之中抽出时间来参与我的论文评审和答辨。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值