学生就业信息分析系统(需求文档)

本科毕业设计(论文)任务书

(由指导教师填写)

题目名称

学生就业信息分析系统的设计与实现

题目性质

□基础

□应用

■设计

□其它

题目来源

□科研课题

□生产社会实际

■其他

1.课题研究的主要内容及基本要求

学生就业信息分析系统是旨在帮助学校、学生以及潜在雇主了解和分析学生就业情况的工具。

(1)系统功能

数据采集与录入:收集毕业生的就业信息,包括就业单位、岗位、地区、薪资等。允许管理员或授权人员录入和更新就业数据。

用户账户管理:不同用户角色(如管理员、学生、教师、雇主)的注册、登录、信息管理。

数据分析与报告:对就业数据进行统计分析,生成就业率、平均薪资、行业分布等指标。提供多维度的数据分析,如按照专业、学历、地区等条件的就业情况分析。生成可视化报告,帮助用户直观理解数据。

查询与搜索:允许用户根据不同条件(如专业、地区、行业等)查询就业信息。提供高级搜索功能,以便用户可以精确找到特定数据。

趋势预测:利用历史数据或网络爬取相关数据,预测未来的就业趋势和市场需求。提供行业趋势分析,帮助学生了解未来潜在的就业领域,可视化图表或列表方式展示。

职业发展指导:根据就业数据为学生提供职业规划建议,网络爬取职业发展相关论坛、讲座、课程数据,列表或可视化方式展示。

反馈和更新:允许用户提供就业信息的反馈,以便系统及时更新数据。定期跟踪毕业生的职业发展,更新就业信息。

互动交流平台:设立论坛或留言板,让用户分享就业经验和市场信息。

(2)用户角色及权限

管理员:管理系统所有功能,包括数据录入、用户管理、数据分析、系统设置等。

学生:查看就业信息、参与职业发展活动、访问职业指导资源、提供就业反馈。

教师/职业顾问:访问分析报告,提供职业指导,参与数据分析和趋势预测。

雇主:查看毕业生就业情况,发布职位信息,进行人才搜索。

(3)开发技术(不限)

前端技术:HTML, CSS, JavaScript, 可视化库(如Chart.js或ECharts)。

后端技术:Java, Python, Node.js等,配合Spring Boot, Flask, Express等框架。

数据库技术:MySQL, PostgreSQL, MongoDB等,存储用户数据和就业信息。

数据分析工具:Python的Pandas, NumPy,机器学习库如scikit-learn。

开发工具:IDE(如IntelliJ IDEA, PyCharm, VSCode等),Git, Docker。

在设计该系统时,应当关注用户体验、数据安全与隐私保护以及系统的可扩展性和可维护性。

2、对毕业设计(论文)成果要求

(1)必须独立完成毕业设计论文,不得抄袭(需要提交图书馆进行相似性检测,重复率不得超过30%);

(2)论文书写符合规范、文字通顺、图表清晰、数据完整、结论正确; 

(3)论文包括题名、目录、摘要(包括中、英文摘要,200-300字)、绪论(前言)、正文、结论、参考文献(15篇左右含3篇外文文献)组成;论文字数1.5-2万字。

(4)论文要求打印2份,交叉评阅及答辩后,学生再根据答辩小组的意见修改论文,改好后,装订成册(1本就可);同时提交论文电子版。

(5)提交所开发的系统,要求系统界面友好、功能较完善并数据处理准确。

本科毕业设计(论文)任务书

(由指导教师填写)

3、主要参考文献

[1]《JavaScript权威指南》 [美]David Flanagan 机械工业出版社 2021-3-20

[2]《深入浅出Node.js》 扑灵 人民邮电出版社 2013-12-1

[3]Vue.js中文官方文档:https://vuejs.bootcss.com/guide/

[4]React.js官方文档:https://reactjs``.org/docs/getting-started.html

[5] 《Java微服务(分布式架构)》千锋教育高教产品研发部 清华大学出版社 20201

[6] 《Java微服务》【美】Sourabh Sharma 电子工业出版社 2017年7月

[7] 《MySQL技术内幕:InnoDB存储引擎》 姜承尧 机械工业出版社 2013-5

[8] Mysql官方手册:https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

[9] 以HTML 5+CSS3+jQuery为基础的响应式布局网页设计探讨[J]. 张丽.计算机产品与流通,2019(11)

[10] SSM框架在Web应用开发中的设计与实现[J]. 李洋.计算机技术与发展,2016(12)

[11] 《数据分析实战方法、工具与可视化》 曾津 韩知白 人民邮电出版社

[12] 曾诚. 基于Python的网络爬虫及数据可视化和预测分析[J]. 信息与电脑(理论版), 2020, 32 (09): 167-169.

4、毕业设计(论文)工作进程计划

序号

设计(论文)工作进度

日期(起止周数)

1

开题报告

2023年12月14日-2023年12月30

2

实施调研/实验阶段 

2024年1月1日-2023年2月28日

3

完成初稿

2024年3月1日-2024年4月1日

4

修改定稿

2024年4月2日-2024年4月30日

5

答    辩

2024年5月22日-2024年5月24日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值