描述
中国象棋博大精深,其中马的规则最为复杂,也是最难操控的一颗棋子。
我们都知道象棋中马走"日",比如在 (2, 4)位置的一个马,跳一步能到达的位置有 (0, 3),(0, 5),(1, 2),(1, 6),(3, 2),(3, 6),(4, 3),(4, 5)。
小明正在和大锤下棋,小明正在进行战略布局,他需要把在 (x,y)位置的马跳到 (x', y')位置,以达到威慑的目的。
但是棋盘大小有限制,棋盘是一个 10×9 的网格,左上角坐标为 (0,0),右下角坐标为 (9,8),马不能走出棋盘,并且有些地方已经有了棋子,马也不能跳到有棋子的点。
小明想知道,在不移动其他棋子的情况下,能否完成他的战略目标。
【备注:不考虑象棋中“别马脚”情况】
输入
输入一共 10 行,每行一个长度为 9 的字符串。
输入表示这个棋盘,我们用'.'表示空位置,用'#'表示该位置有棋子,用'S'表示初始的马的位置,用'T'表示马需要跳到的位置。
输入保证一定只存在一个'S'和一个'T'。
输出
如果在不移动其他棋子的情况下,马能从'S'跳到'T',那么输出一行"Yes",否则输出一行"No"。
输入样例
.#....#S# ..#.#.#.. ..##.#..# ......##. ...T..... ...#.#... ...#..... ...###... ......... .##......
输出样例
Yes
提示
【马】A的8个位置(B、C、D、E、F、G、H、I)
题解
#include<bits/stdc++.h>
using namespace std;
int s[110][110];
bool v[110][110];
int ans=0,n,m,t,fx,fy,sx,sy;
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
bool in(int x,int y){
return x>=1 && x<=n && y>=1 && y<=m;
}
void d(int x,int y){
if(x==fx && y==fy){
ans++;
return;
}
for(int i=0;i<4;i++){
int tx=x+dir[i][0];
int ty=y+dir[i][1];
if(in(tx,ty) && s[tx][ty]!=1 && v[tx][ty]==0){
v[tx][ty]=1;
d(tx,ty);
v[tx][ty]=0;
}
}
return;
}
int main(){
cin>>n>>m>>t;
cin>>sx>>sy>>fx>>fy;
for(int i=1;i<=t;i++){
int a,b;
cin>>a>>b;
s[a][b]=1;
}
v[sx][sy]=1;
d(sx,sy);
cout<<ans;
return 0;
}