这种方法凑效的原因就在于拉普拉斯算子定义本身。它被用来测量图片的二阶导数,突出图片中强度快速变化的区域,和 Sobel 以及 Scharr 算子十分相似。并且,和以上算子一样,拉普拉斯算子也经常用于边缘检测。此外,此算法基于以下假设:如果图片具有较高方差,那么它就有较广的频响范围,代表着正常,聚焦准确的图片。但是如果图片具有有较小方差,那么它就有较窄的频响范围,意味着图片中的边缘数量很少。正如我们所知道的,图片越模糊,其边缘就越少。
有了代表清晰度的值,剩下的工作就是设定相应的阀值,如果某图片方差低于预先定义的阈值,那么该图片就可以被认为是模糊的,高于阈值,就不是模糊的。
实操
原理看起来比较复杂,涉及到很多信号啊图片处理的相关知识,下面我们来实操一下,直观感受下。
由于人生苦短,以及我个人是朋友圈第一 Python 吹子,我选择使用 Python 来实现,核心代码简单到令人发指:
import cv2
def getImageVar(imgPath):
image = cv2.imread(imgPath);
img2gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
imageVar = cv2.Laplacian(img2gray, cv2.CV_64F).var()
return imageVar
真是人生苦短啊,核心代码就三行,简单解释下。
import cv2使用了一个著名的图像处理库 OpenCV,关于 OpenCV 的安装这里不多赘述,需要注意的是它依赖 numpy。
image = cv2.imread(imgPath)使用 OpenCV 提供的方法读取图片。img2gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)转化为灰度图。如下图:
原图是这样的:
cv2.Laplacian(img2gray, cv2.CV_64F)对图片用 3x3 拉普拉斯算子做卷积,这里的cv2.CV_64F就是拉普拉斯算子。
原理部分说过,拉普拉斯算子经常用于边缘检测,所以这里经过拉普拉斯算子之后,留下的都是检测到的边缘。上图经过这步处理之后是这样的:
可以看到这里图片人物大致还是比较清晰的。
cv2.Laplacian(img2gray, cv2.CV_64F).var()计算出方差,并最后返回。
上面那张图按这个计算出来时 3170 多,这个就是最后我们用来判断清晰度的值。
可以再找一张看看:
原图:
做灰度和经过拉普拉斯算子之后,可以看到人物部分已经不是很清晰了。
最后算出来的方差只有 530
剩下的工作就是根据整体图片质量确定阀值了。