2.1 实数集公理系统

函数是分析学研究的主要对象之一。为了研究函数的各种性质,必须给出实数集的精确定义,因为函数作用在实数集上。

数学中的数是极为抽象但又极为基础的对象。关于数的理论是一门丰富的独立课程。在本节中,作者主要罗列了有关实数的一些基本结论。

实数集的定义

如果以下四组条件成立,则称集合 R \mathbb{R} R 为实数集,这些条件称为实数公理系统。

加法公理

定义了一个映射(加法运算 ⊕ : R × R → R \oplus:\mathbb{R}\times \mathbb{R}\to \mathbb{R} :R×RR , 使得 R \mathbb{R} R 中元素 x , y x,y x,y 的每个序偶 ( x , y ) (x,y) (x,y) 都与某元素 x ⊕ y ∈ R x\oplus y\in \mathbb{R} xyR 相对应,后者称为 x x x y y y 的和,并且有以下条件成立:

1 ⊕ 1_\oplus 1 存在零元素 存在一个零元 0 0 0 , 对于任何的 x ∈ R x\in \mathbb{R} xR , 都有 x ⊕ 0 = 0 ⊕ x = x x\oplus0=0\oplus x=x x0=0x=x .

2 ⊕ 2_\oplus 2 存在相反元素 对于任何元素 x ∈ R x\in \mathbb{R} xR , 都存在一个 − x ∈ R -x\in \mathbb{R} xR , 称为 x x x 的相反元素,它满足 x ⊕ ( − x ) = ( − x ) ⊕ x = 0 x\oplus(-x)=(-x)\oplus x=0 x(x)=(x)x=0 .

3 ⊕ 3_\oplus 3 结合律 R \mathbb{R} R 中的任何元素 x , y , z x,y,z x,y,z 满足 x ⊕ ( y ⊕ z ) = ( x ⊕ y ) ⊕ z x\oplus(y\oplus z)=(x\oplus y)\oplus z x(yz)=(xy)z .

4 ⊕ 4_\oplus 4 交换律 R \mathbb{R} R 的任何元素 x , y x,y x,y 满足 x ⊕ y = y ⊕ x x\oplus y=y\oplus x xy=yx

如果在某集合 G G G 上定义了满足公理 1 ⊕ , 2 ⊕ , 3 ⊕ 1_\oplus,2_\oplus,3_\oplus 1,2,3 的运算 , 我们就说在 G G G 上给定了群结构,即 G G G .

如果称该运算为加法,就称这个群为加法群 . 如果在此基础上 , 4 ⊕ 4_\oplus 4 也满足,则称这个群为交换群阿贝尔群 .

于是, R \mathbb{R} R 是加法阿贝尔群 .

乘法公理

定义了一个映射 (乘法运算) ⊗ : R × R → R \otimes :\mathbb{R}\times \mathbb{R}\to \mathbb{R} :R×RR , 使得 R \mathbb{R} R 中元素 x , y x,y x,y 的每个序偶 ( x , y ) (x,y) (x,y) 都与某元素 x ⊗ y ∈ R x\otimes y\in \mathbb{R} xyR 相对应,后者称为 x x x y y y 的积,并且有以下条件成立:

1 ⊗ 1_\otimes 1 存在单位元素 存在一个单位元素 1 ∈ R − { 0 } 1\in \mathbb{R}-\{0\} 1R{0} , 对于任何的 x ∈ R x\in \mathbb{R} xR , 都有 x ⊗ 1 = 1 ⊗ x = x x\otimes1=1\otimes x=x x1=1x=x .

2 ⊗ 2_\otimes 2 存在逆元素 对于任何元素 x ∈ R x\in \mathbb{R} xR , 都存在一个 x − 1 ∈ R x^{-1}\in \mathbb{R} x1R , 称为 x x x 的逆元素,它满足 x ⊗ ( − x ) = ( − x ) ⊗ x = 1 x\otimes(-x)=(-x)\otimes x=1 x(x)=(x)x=1 .

3 ⊗ 3_\otimes 3 结合律 R \mathbb{R} R 中的任何元素 x , y , z x,y,z x,y,z 满足 x ⊗ ( y ⊗ z ) = ( x ⊗ y ) ⊗ z x\otimes(y\otimes z)=(x\otimes y)\otimes z x(yz)=(xy)z .

4 ⊗ 4_\otimes 4 交换律 R \mathbb{R} R 的任何元素 x , y x,y x,y 满足 x ⊗ y = y ⊗ x x\otimes y=y\otimes x xy=yx .

集合 1 ∈ R − { 0 } 1\in \mathbb{R}-\{0\} 1R{0} 相对于乘法运算是乘法群 .

加法与乘法的联系公理

乘法相对于加法满足分配律,即 ∀ x , y , z ∈ R \forall x,y,z\in \mathbb{R} x,y,zR , ( x ⊕ y ) ⊗ z = ( x ⊗ z ) ⊕ ( y ⊗ z ) (x\oplus y)\otimes z=(x\otimes z)\oplus (y\otimes z) (xy)z=(xz)(yz)

根据乘法的交换律,还有 x ⊗ ( y ⊕ z ) = ( x ⊗ y ) ⊕ ( x ⊗ z ) x\otimes (y\oplus z)=(x\otimes y)\oplus (x\otimes z) x(yz)=(xy)(xz)

如果在某集合 G G G 上定义了满足上述全部公理的两种运算,则称 G G G代数域 ,简称


序公理

R \mathbb{R} R 的元素之间存在关系 ≤ \leq , 即对于 R \mathbb{R} R 中的任何两个元素,可以确定 x ≤ y x\leq y xy 是否成立 . 这时,需要满足以下条件:

0 ≤ 0_\leq 0 自反性 ∀ x ∈ R ( x ≤ x ) \forall x\in\mathbb{R}(x\leq x) xR(xx)

1 ≤ 1_\leq 1 反对称性 ( x ≤ y ) ∧ ( y ≤ x ) ⇒ x = y (x\le y)\wedge(y\le x)\Rightarrow x=y (xy)(yx)x=y

2 ≤ 2_\leq 2 传递性 ( x ≤ y ) ∧ ( y ≤ z ) ⇒ ( x ≤ z ) (x\leq y)\wedge(y\leq z)\Rightarrow (x\leq z) (xy)(yz)(xz)

3 ≤ 3_\leq 3 可比性 ∀ x , y ∈ R ( x ≤ y ) ∨ ( y ≤ x ) \forall x,y\in \mathbb{R}(x\le y)\vee(y\le x) x,yR(xy)(yx)

R \mathbb{R} R 中的关系 ≤ \leq 称为不等关系 .

满足 0 ≤ , 1 ≤ , 2 ≤ 0_\leq,1_\leq,2_\leq 0,1,2 ,称为偏序集 . 进一步满足 3 ≤ 3_\leq 3 的,称为线性序集 .

实数集 R \mathbb{R} R 是线性序集 .

加法与序关系的联系公理

R \mathbb{R} R 中的任何元素 x , y , z x,y,z x,y,z 满足 ( x ≤ y ) ⇒ ( x ⊕ z ≤ y ⊕ z ) (x\le y)\Rightarrow (x\oplus z\leq y\oplus z) (xy)(xzyz) .

乘法与序关系的联系公理

R \mathbb{R} R 中的任何元素 x , y x,y x,y 满足 ( 0 ≤ x ) ∧ ( 0 ≤ y ) ⇒ ( 0 ≤ x ⊗ y ) (0\leq x)\wedge(0\leq y)\Rightarrow (0\leq x\otimes y) (0x)(0y)(0xy)

完备性/连续性公理

如果 X X X Y Y Y R \mathbb{R} R 的非空子集,并且对于任何元素 x ∈ X x\in X xX , y ∈ Y y\in Y yY , 都有 x ≤ y x\le y xy , 则存在 c ∈ R c\in \mathbb{R} cR , 使得对于任何元素 x ∈ X x\in X xX y ∈ Y y\in Y yY 都有 x ≤ c ≤ y x\leq c\leq y xcy .

实数模型

满足以上所有公理的集合 R \mathbb{R} R 是实数的一种表示,即通常所说的实数模型 .

可以出以上公理推导出很多实数的其他性质 .

对于任何抽象公理系统,应该首先考虑两个问题:

  • 存在性 公理是否相容?具体的说,满足系统中所有公理的集合是否存在?这称之为公理系统的无矛盾性问题
  • 唯一性 公理系统是否唯一地定义了一个数学对象?从逻辑学的角度,该公理系统是否是范畴的?

唯一性的含义是:

假设有两套独立建设的满足公理系统的实数模型 R A \mathbb{R}_A RA R B \mathbb{R}_B RB ,则在 R A \mathbb{R}_A RA R B \mathbb{R}_B RB 之间可以建立保持算数运算与序关系的双射 f : R A → R B f:\mathbb{R}_A\to \mathbb{R}_B f:RARB , 它满足

  • f ( x ⊕ y ) = f ( x ) ⊕ f ( y ) f(x\oplus y)=f(x)\oplus f(y) f(xy)=f(x)f(y)
  • f ( x ⊗ y ) = f ( x ) ⊗ f ( y ) f(x\otimes y)=f(x)\otimes f(y) f(xy)=f(x)f(y)
  • x ≤ y ⇔ f ( x ) ≤ f ( y ) x\le y\Leftrightarrow f(x)\le f(y) xyf(x)f(y)

在数学观点下,这时 R A \mathbb{R}_A RA R B \mathbb{R}_B RB 只是实数的不同的完全等价的表示模型(例如, R A R_A RA 为十进制无穷小数, R B R_B RB 为数轴上的点). 称之为同构表示 . 称映射 f f f同构映射 .

上面的两个问题都是具有肯定答案的,但证明过程比较复杂 . 在后面的章节里会涉及 .

实数的某些一般的代数性质

加法公理的推论

在实数集中只由唯一的零元素

证明:

如果 0 1 0_1 01 0 2 0_2 02 都是 R \mathbb{R} R 的零元素 . 根据零元素的定义得 0 1 = 0 1 ⊕ 0 2 = 0 2 0_1=0_1\oplus 0_2=0_2 01=0102=02

在实数集中,每个元素的相反元素唯一

证明:

假设 x 1 x_1 x1 x 2 x_2 x2 都是 x x x 的相反元素 ,则有 x 1 = x 1 ⊕ 0 = x 1 ⊕ ( x ⊕ x 2 ) = ( x 1 ⊕ x ) ⊕ x 2 = 0 ⊕ x 2 = x 2 x_1=x_1\oplus 0=x_1\oplus(x\oplus x_2)=(x_1\oplus x)\oplus x_2=0\oplus x_2=x_2 x1=x10=x1(xx2)=(x1x)x2=0x2=x2

方程 a ⊕ x = b a\oplus x=b ax=b R \mathbb{R} R 中有唯一解 x = b ⊕ ( − a ) x=b\oplus(-a) x=b(a) .

证明:

a a a 有唯一的相反元素 − a -a a .

a ⊕ x = b ⇔ − a ⊕ a ⊕ x = − a ⊕ b ⇔ x = b ⊕ ( − a ) a\oplus x = b\Leftrightarrow -a\oplus a\oplus x=-a\oplus b\Leftrightarrow x = b\oplus (-a) ax=baax=abx=b(a)

表达式 b ⊕ ( − a ) b\oplus (-a) b(a) 可以简写为 b − a b-a ba . 这就是减法的来源 .

乘法公理的推论

在实数集中只有唯一的单位元素

每个实数 x ≠ 0 x\ne 0 x=0 只有唯一的逆元素 x − 1 x^{-1} x1

方程 a ⊗ x = b a\otimes x=b ax=b a ∈ R − { 0 } a\in \mathbb{R}-\{0\} aR{0} 时有唯一解 x = b ⊗ a − 1 x=b\otimes a^{-1} x=ba1

证明过程类似加法公理的推论

b ⊗ a − 1 b\otimes a^{-1} ba1 可以简写为 b ÷ a b\div a b÷a . 这就是除法的来源 .

加法与乘法的联系公理的推论

对于任何的 x ∈ R x\in\mathbb{R} xR , 有 x ⊗ 0 = 0 ⊗ x = 0 x\otimes 0=0\otimes x=0 x0=0x=0

证明:

x ⊗ 0 = x ⊗ ( 0 ⊕ 0 ) = ( x ⊗ 0 ) ⊕ ( x ⊗ 0 ) ⇒ x ⊗ 0 = ( x ⊗ 0 ) + ( − ( x ⊗ 0 ) ) = 0 x\otimes 0=x\otimes (0\oplus 0)=(x\otimes 0)\oplus(x\otimes 0)\Rightarrow x\otimes 0=(x\otimes 0)+(-(x\otimes 0))=0 x0=x(00)=(x0)(x0)x0=(x0)+((x0))=0

x ⊗ y = 0 ⇒ ( x = 0 ) ∨ ( y = 0 ) x\otimes y=0\Rightarrow (x=0)\vee(y=0) xy=0(x=0)(y=0)

证明:

假设 y ≠ 0 y\ne 0 y=0 , 则存在 y − 1 y^{-1} y1 , 则 x = 0 ⊗ y − 1 = 0 x=0\otimes y^{-1}=0 x=0y1=0

对于任何的 x ∈ R x\in \mathbb{R} xR , − x = ( − 1 ) ⊗ x -x=(-1)\otimes x x=(1)x

证明:

− x = 0 ⊕ ( − x ) = ( 1 ⊕ ( − 1 ) ) ⊗ x ⊕ ( − x ) -x=0\oplus (-x)=(1\oplus(-1))\otimes x\oplus (-x) x=0(x)=(1(1))x(x)

= 1 ⊗ x ⊕ ( − 1 ) ⊗ x ⊕ ( − x ) = x ⊕ ( − x ) ⊕ ( − 1 ) ⊗ x = 0 ⊕ ( − 1 ) ⊗ x = ( − 1 ) ⊗ x =1\otimes x\oplus(-1)\otimes x\oplus (-x) =x\oplus (-x)\oplus (-1)\otimes x=0\oplus (-1)\otimes x=(-1)\otimes x =1x(1)x(x)=x(x)(1)x=0(1)x=(1)x

对于任何的 x ∈ R x\in\mathbb{R} xR , 有 ( − 1 ) ⊗ ( − x ) = x (-1)\otimes(-x)=x (1)(x)=x

证明:

( − 1 ) ⊗ ( − x ) = − ( − x ) = − ( − x ) ⊕ ( ( − x ) ⊕ x ) = 0 ⊕ x = x (-1)\otimes (-x)=-(-x)=-(-x)\oplus((-x)\oplus x)=0\oplus x=x (1)(x)=(x)=(x)((x)x)=0x=x

对于任何的 x ∈ R x\in\mathbb{R} xR , ( − x ) ⊗ ( − x ) = x ⊗ x (-x)\otimes(-x)=x\otimes x (x)(x)=xx

( − x ) ⊗ ( − x ) = ( − 1 ) ⊗ x ⊗ ( − x ) = ( − 1 ) ⊗ ( − x ) ⊗ x = x ⊗ x (-x)\otimes(-x)=(-1)\otimes x\otimes (-x)=(-1)\otimes (-x)\otimes x=x\otimes x (x)(x)=(1)x(x)=(1)(x)x=xx

序公理的推论

x ≠ y x\ne y x=y x ≤ y x\le y xy 又可写作 x < y x<y x<y , 称为严格小于 .

对于任何 x , y ∈ R x,y\in \mathbb{R} x,yR , 在以下关系中恰好只有一个关系成立: x < y ,   x = y ,   y < x x<y,\ x=y,\ y<x x<y, x=y, y<x

由公理 1 ≤ 1_\leq 1 3 ≤ 3_\leq 3 及严格小于的定义可得

对于 R \mathbb{R} R 中的任何数 x , y , z x,y,z x,y,z , 有

  • ( x < y ) ∧ ( y ≤ z ) ⇒ ( x < z ) (x<y)\wedge(y\leq z)\Rightarrow (x<z) (x<y)(yz)(x<z)

  • ( x ≤ y ) ∧ ( y < z ) ⇒ ( x < z ) (x\le y)\wedge(y< z)\Rightarrow (x< z) (xy)(y<z)(x<z)

  • ( x < y ) ∧ ( y ≤ z ) ⇒ ( x ≤ y ) ∧ ( x ≠ y ) ∧ ( y ≤ z ) ⇒ ( x ≤ z ) ∧ ( x ≠ y ) (x<y)\wedge(y\leq z)\Rightarrow (x\le y)\wedge(x\ne y)\wedge(y\le z)\Rightarrow (x\le z)\wedge(x\ne y) (x<y)(yz)(xy)(x=y)(yz)(xz)(x=y)

假设 x = z x=z x=z , 则有 z ≤ x z\le x zx , 进而有 y ≤ x y\le x yx , 推出 x = y x=y x=y , 产生矛盾

( x ≤ z ) ∧ ( x ≠ z ) ⇒ x < z (x\le z)\wedge(x\ne z)\Rightarrow x<z (xz)(x=z)x<z .

加法,乘法和序关系的联系公理的推论

对于 R \mathbb{R} R 中的任何数 x , y , z , w x,y,z,w x,y,z,w

  • ( x < y ) ⇒ ( x ⊕ z ) < ( y ⊕ z ) (x<y)\Rightarrow (x\oplus z)<(y\oplus z) (x<y)(xz)<(yz)

  • ( 0 < x ) ⇒ ( − x < 0 ) (0<x)\Rightarrow (-x<0) (0<x)(x<0)

  • ( x ≤ y ) ∧ ( z ≤ w ) ⇒ ( x ⊕ z ) ≤ ( y ⊕ w ) (x\le y)\wedge(z\le w)\Rightarrow (x\oplus z)\le (y\oplus w) (xy)(zw)(xz)(yw)

  • ( x ≤ y ) ∧ ( z < w ) ⇒ ( x ⊕ z < y ⊕ w ) (x\le y)\wedge(z<w)\Rightarrow (x\oplus z<y\oplus w) (xy)(z<w)(xz<yw)

  • x < y ⇒ ( x ≤ y ) ∧ ( x ≠ y ) ⇒ ( ( x ⊕ z ) ≤ ( y ⊕ z ) ) ∧ ( x ≠ y ) x<y\Rightarrow (x\le y)\wedge(x\ne y)\Rightarrow ((x\oplus z)\le (y\oplus z))\wedge(x\ne y) x<y(xy)(x=y)((xz)(yz))(x=y)

( x ⊕ z ) = ( y ⊕ z ) (x\oplus z)= (y\oplus z) (xz)=(yz) , 则 x = y ⊕ z ⊕ ( − z ) = y x=y\oplus z\oplus(-z)=y x=yz(z)=y . 产生矛盾 .

  • 0 < x ⇒ 0 ⊕ ( − x ) < x ⊕ ( − x ) ⇒ − x < 0 0<x\Rightarrow 0\oplus (-x)<x\oplus (-x)\Rightarrow -x<0 0<x0(x)<x(x)x<0

  • x ≤ y ⇒ x ⊕ z ≤ y ⊕ z ≤ y ⊕ w x\le y\Rightarrow x\oplus z\le y\oplus z\le y\oplus w xyxzyzyw

  • 类似

对于 R \mathbb{R} R 中的任何数 x , y , z x,y,z x,y,z

  • ( 0 < x ) ∧ ( 0 < y ) ⇒ ( 0 < x ⊗ y ) (0<x)\wedge(0<y)\Rightarrow (0<x\otimes y) (0<x)(0<y)(0<xy)

  • ( x < 0 ) ∧ ( y < 0 ) ⇒ ( 0 < x ⊗ y ) (x<0)\wedge(y<0)\Rightarrow (0<x\otimes y) (x<0)(y<0)(0<xy)

  • ( x < 0 ) ∧ ( 0 < y ) ⇒ ( x ⊗ y < 0 ) (x<0)\wedge(0<y)\Rightarrow (x\otimes y<0) (x<0)(0<y)(xy<0)

  • ( x < y ) ∧ ( 0 < z ) ⇒ ( x ⊗ z < y ⊗ z ) (x<y)\wedge(0<z)\Rightarrow (x\otimes z<y\otimes z) (x<y)(0<z)(xz<yz)

  • ( x < y ) ∧ ( z < 0 ) ⇒ ( y ⊗ z < x ⊗ z ) (x<y)\wedge(z<0)\Rightarrow (y\otimes z<x\otimes z) (x<y)(z<0)(yz<xz)

  • ( 0 < x ) ∧ ( 0 < y ) ⇒ ( 0 ≤ x ) ∧ ( 0 ≤ y ) ∧ ( x ≠ 0 ) ∧ ( y ≠ 0 ) (0<x)\wedge(0<y)\Rightarrow (0\le x)\wedge(0\le y)\wedge(x\ne 0)\wedge(y\ne 0) (0<x)(0<y)(0x)(0y)(x=0)(y=0)

由乘法与与关系的联系公理得, 0 ≤ x ⊗ y 0\le x\otimes y 0xy

x ⊗ y = 0 x\otimes y=0 xy=0 , 则 x = 0 ⊗ y − 1 = 0 x=0\otimes y^{-1}=0 x=0y1=0 . 产生矛盾 .

  • x < 0 ⇒ ( − x ) ⊕ x < − x ⇒ 0 < − x x<0\Rightarrow (-x)\oplus x<-x\Rightarrow 0<-x x<0(x)x<x0<x

同理得 0 < − y 0<-y 0<y . 故 0 < ( − x ) ⊗ ( − y ) = ( − x ) ⊗ ( − 1 ) ⊗ y = x ⊗ y 0<(-x)\otimes (-y)=(-x)\otimes (-1)\otimes y=x\otimes y 0<(x)(y)=(x)(1)y=xy

  • x < 0 ⇒ 0 < − x ⇒ 0 < ( − x ) ⊗ y ⇒ 0 < ( − 1 ) ⊗ ( x ⊗ y ) ⇒ x ⊗ y < 0 x<0\Rightarrow 0<-x\Rightarrow 0<(-x)\otimes y\Rightarrow 0<(-1)\otimes(x\otimes y)\Rightarrow x\otimes y<0 x<00<x0<(x)y0<(1)(xy)xy<0

  • x < y ⇒ 0 < y ⊕ ( − x ) ⇒ 0 < ( y ⊕ ( − x ) ) ⊗ z ⇒ x ⊗ z < y ⊕ z x<y\Rightarrow 0<y\oplus(-x) \Rightarrow 0<(y\oplus (-x))\otimes z\Rightarrow x\otimes z<y\oplus z x<y0<y(x)0<(y(x))zxz<yz

0 < 1 0<1 0<1

首先 1 ∈ R − { 0 } 1\in \mathbb{R}-\{0\} 1R{0} , 故 0 ≠ 1 0\ne 1 0=1

1 < 0 1<0 1<0 , 则 ( 1 < 0 ) ∧ ( 1 < 0 ) ⇒ 0 < 1 ⊗ 1 = 1 (1<0)\wedge(1<0)\Rightarrow 0<1\otimes 1=1 (1<0)(1<0)0<11=1 . 产生矛盾

由序公理推论得, 0 < 1 0<1 0<1

  • ( 0 < x ) ⇒ ( 0 < x − 1 ) (0<x)\Rightarrow (0<x^{-1}) (0<x)(0<x1)

  • ( 0 < x ) ∧ ( x < y ) ⇒ ( 0 < y − 1 ) ∧ ( y − 1 < x − 1 ) (0<x)\wedge(x<y)\Rightarrow (0<y^{-1})\wedge(y^{-1}<x^{-1}) (0<x)(x<y)(0<y1)(y1<x1)

  • 假设 x − 1 < 0 x^{-1}< 0 x1<0 . 则 x ⊗ x − 1 < 0 ⇒ 1 < 0 x\otimes x^{-1} < 0\Rightarrow 1<0 xx1<01<0 . 产生矛盾 . 故 0 < x − 1 0<x^{-1} 0<x1
  • ( 0 < x ) ∧ ( x < y ) ⇒ 0 < y ⇒ 0 < y − 1 (0<x)\wedge(x<y)\Rightarrow 0<y\Rightarrow 0<y^{-1} (0<x)(x<y)0<y0<y1

x ≠ y ⇒ x − 1 ≠ y − 1 x\ne y\Rightarrow x^{-1}\ne y^{-1} x=yx1=y1 . 假设 x − 1 < y − 1 x^{-1}<y^{-1} x1<y1 , 则 1 < x ⊗ y − 1 ⇒ y < x 1<x\otimes y^{-1}\Rightarrow y<x 1<xy1y<x . 产生矛盾 .

完备性公理与数集的上下确界的存在性

设集合 X ⊂ R X\subset \mathbb{R} XR , 如果存在数 c c c , 使得对于任何 x ∈ X x\in X xX 都有 x ≤ c x\le c xc , 就说集合 X X X上有界集 . 如果存在数 c c c , 使得对于任何 x ∈ X x\in X xX 都有 x ≥ c x\ge c xc , 就说集合 X X X下有界集 .

既是上有界集又是下有界集的集合称为有界集 .

a a a 是集合 X ⊂ R X\subset \mathbb{R} XR 的元素 . 如果对于任何的 x ∈ X x\in X xX , 都有 x ≤ c x\le c xc , 则称元素 a a a X X X最大元素 . 如果对于任何的 x ∈ X x\in X xX , 都有 x ≥ c x\ge c xc , 则称元素 a a a X X X最小元素 .

最大最小元素如果存在,则唯一 .

并不是所有集合都有最大最小元素 .

集合 X ⊂ R X\subset \mathbb{R} XR 的上界中的最小者称为 X X X上确界 . 下界中的最大者称为 X X X下确界 .

上确界:是上界,再小就不是上界

下确界:是下界,再大就不是下界

上确界原理 X X X 不是空集,且有上界 ⇒ \Rightarrow 存在上确界 sup ⁡ X \sup X supX

下确界原理 X X X 不是空集,且有下界 ⇒ \Rightarrow 存在下确界 inf ⁡ X \inf X infX

X ⊂ R X\subset \mathbb{R} XR 是给定的集合,而 Y = { y ∈ R ∣ ∀ x ∈ X ( x ≤ y ) } Y=\{y\in \mathbb{R}|\forall x\in X(x\le y)\} Y={yR∣∀xX(xy)} X X X 的上界组成的集合 . 根据条件, X , Y X,Y X,Y 均非空 . 对于任何元素 x ∈ X x\in X xX , y ∈ Y y\in Y yY , 都有 x ≤ y x\le y xy , 根据完备性公理,存在 c ∈ R c\in \mathbb{R} cR , 使得对于任何元素 x ∈ X x\in X xX y ∈ Y y\in Y yY 都有 x ≤ c ≤ y x\leq c\leq y xcy . 因此, c c c 既是 X X X 的上界,也是 Y Y Y 的下界 . c c c X X X 的上界,说明 c ∈ Y c\in Y cY . c c c Y Y Y 的下界,说明 c c c Y Y Y 的最小元素 . 即 c c c X X X 的上确界 .

  • 13
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值