备战24建模国赛中!!!!

需要资料的宝子们可以进企鹅获取呢!!!

第一章 线性规划

§1 线性规划

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。自从 1947 年 G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深 入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义

例 1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4000 元与 3000 元。 生产甲机床需用 A、B 机器加工,加工时间分别为每台 2 小时和 1 小时;生产乙机床 需用 A、B、C 三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为 A 机器 10 小时、B 机器 8 小时和C 机器 7 小时,问该厂应生产甲、乙机床各 几台,才能使总利润最大?

上述问题的数学模型:设该厂生产 1 x 台甲机床和 2 x 乙机床时总利润最大,则 1 2 x , x

应满足

(2)

这里变量 1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为 s.t.(即 subject to)。由于上面的目标函数及约束条件均为线性 函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最 小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往 也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我 们建立有效模型的关键之一。 1.2 线性规划的 Matlab 标准形式

线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以 是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性 规划的标准形式为

其中 c 和 x 为 n 维列向量, A 、 Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向 量。

-2 -

例如线性规划

c x Ax b x

T max s.t. ≥

的 Matlab 标准型为 c x Ax b x

T min − s.t. − ≤ − 1.3 线性规划问题的解的概念

一般线性规划问题的(数学)标准型为

(4)

可行解 满足约束条件(4)的解 ( , , , ) 1 2 n x = x x L x ,称为线性规划问题的可行解, 而使目标函数(3)达到最大值的可行解叫最优解。

可行域 所有可行解构成的集合称为问题的可行域,记为 R 。 1.4 线性规划的图解法

0 2 4 6 8 1 0 0 1 2 3 4 5 6 7 8 9 1 0 x 2 = 7 2 x 1 + x 2 = 1 0 x 1 + x 2 = 8 z = 1 2 ( 2 , 6 )

图 1 线性规划的图解示意图

图解法简单直观,有助于了解线性规划问题求解的基本原理。我们先应用图解法来 求解例 1。对于每一固定的值 z ,使目标函数值等于 z 的点构成的直线称为目标函数等 位线,当 z 变动时,我们得到一族平行直线。对于例 1,显然等位线越趋于右上方,其 上的点具有越大的目标函数值。不难看出,本例的最优解为 T x* = (2,6) ,最优目标值

z* = 26 。

从上面的图解过程可以看出并不难证明以下断言:

(1)可行域 R 可能会出现多种情况。R 可能是空集也可能是非空集合,当 R 非空 时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。R 既可能是有界区域, 也可能是无界区域。

(2)在 R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其 目标函数值无界)。

-3-

(3)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域 R 的 “顶点”。

上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。在一般的n 维 空间中,满足一线性等式

)的点集被称为一个半空间(其中( , , ) a1 L an 为一n 维行 向量,b 为一实数)。若干个半空间的交集被称为多胞形,有界的多胞形又被称为多面 体。易见,线性规划的可行域必为多胞形(为统一起见,空集Φ 也被视为多胞形)。

在一般n 维空间中,要直接得出多胞形“顶点”概念还有一些困难。二维空间中的顶点 可以看成为边界直线的交点,但这一几何概念的推广在一般n 维空间中的几何意义并不 十分直观。为此,我们将采用另一途径来定义它。

定义 1 称 n 维空间中的区域 R 为一凸集,若 ∀x x ∈ R 1 2 , 及 ∀λ ∈(0,1) ,有

x + − x ∈R 1 2 λ (1 λ) 。

定义 2 设 R 为n 维空间中的一个凸集, R 中的点 x 被称为 R 的一个极点,若不 存在 x x ∈ R 1 、 2 及λ ∈(0,1) ,使得 1 2 x = λx + (1− λ)x 。

定义 1 说明凸集中任意两点的连线必在此凸集中;而定义 2 说明,若 x 是凸集 R

的一个极点,则 x 不能位于 R 中任意两点的连线上。不难证明,多胞形必为凸集。同 样也不难证明,二维空间中可行域 R 的顶点均为 R 的极点( R 也没有其它的极点)。 1.5 求解线性规划的 Matlab 解法

单纯形法是求解线性规划问题的最常用、最有效的算法之一。这里我们就不介绍 单纯形法,有兴趣的读者可以参看其它线性规划书籍。下面我们介绍线性规划的 Matlab

解法。 Matlab 中线性规划的标准型为

基本函数形式为 linprog(c,A,b),它的返回值是向量 x 的值。还有其它的一些函数调用形 式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如: [x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS)

这里 fval 返回目标函数的值,LB 和 UB 分别是变量 x 的下界和上界, 0 x 是 x 的初始值,

OPTIONS 是控制参数。

例 2 求解下列线性规划问题 m 2 1 3 2 5 3 ax z = x + x − x s.t. x1 + x2 + x3 = 7 2x1 −5x2 + x3 ≥10 x1 + 3x2 + x3 ≤12 x1, x2 , x3 ≥ 0

-4 -

解 (i)编写 M 文件

c=[2;3;-5];

a=[-2,5,-1;1,3,1]; b=[-10;12];

aeq=[1,1,1];

beq=7;

x=linprog(-c,a,b,aeq,beq,zeros(3,1))

value=c'*x

(ii)将M文件存盘,并命名为example1.m。

(iii)在Matlab指令窗运行example1即可得所求结果。

例3 求解线性规划问题

2 1 3 2 3 min z = x + x + x

⎪ ⎩ ⎪ ⎨ ⎧ ≥ + ≥ + + ≥

, , 0 3 2 6 4 2 8

1 2 3 1 2 1 2 3

x x x x x x x x

解 编写Matlab程序如下:

c=[2;3;1]; a=[1,4,2;3,2,0]; b=[8;6]; [x,y]=linprog(c,-a,-b,[],[],zeros(3,1)) 1.6 可以转化为线性规划的问题

很多看起来不是线性规划的问题也可以通过变换变成线性规划的问题来解决。如:

上述指派问题的可行解可以用一个矩阵表示,其每行每列均有且只有一个元素为

1,其余元素均为 0;可以用1,L,n 中的一个置换表示。

问题中的变量只能取 0 或 1,从而是一个 0-1 规划问题。一般的 0-1 规划问题求解 极为困难。但指派问题并不难解,其约束方程组的系数矩阵十分特殊(被称为全单位模 矩阵,其各阶非零子式均为 ±1),其非负可行解的分量只能取 0 或 1,故约束 xij = 0或1

可改写为 xij ≥ 0而不改变其解。此时,指派问题被转化为一个特殊的运输问题,其中

m = n ,ai = bj =1。 3.2 求解指派问题的匈牙利算法

由于指派问题的特殊性,又存在着由匈牙利数学家 Konig 提出的更为简便的解法 —匈牙利算法。算法主要依据以下事实:如果系数矩阵 ( )ij C = c 一行(或一列)中每 一元素都加上或减去同一个数,得到一个新矩阵 ( ) B = bij ,则以C 或 B 为系数矩阵的 指派问题具有相同的最优指派。

例 8 求解指派问题,其系数矩阵为

⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ =

17 19 22 16 24 22 18 17 17 21 19 18 16 15 19 22

C

解 将第一行元素减去此行中的最小元素 15,同样,第二行元素减去 17,第三行 元素减去 17,最后一行的元素减去 16,得

⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ =

1 3 6 0 7 5 1 0 0 4 2 1 1 0 4 7

B1

再将第 3 列元素各减去 1,得

⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ =

* * * * 2

1 3 5 0 7 5 0 0 0 4 1 1 1 0 3 7

B

以 B2 为系数矩阵的指派问题有最优指派 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛

2 1 3 4 1 2 3 4

由等价性,它也是例 7 的最优指派。 有时问题会稍复杂一些。

例 9 求解系数矩阵C 的指派问题

-7-

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ =

4 10 7 10 6 15 14 6 6 10 7 17 12 14 12 8 9 6 6 6 12 7 9 7 9

C

解:先作等价变换如下

∨ ∨ ∨ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ → ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − −

0 6 3 6 2 9 8 0 * 0 4 0 * 10 5 7 5 2 3 0 0 * 0 5 0 * 2 0 2 4 10 7 10 6 15 14 6 6 10 7 17 12 14 12 8 9 6 6 6 12 7 9 7 9 4 6 7 6 7

容易看出,从变换后的矩阵中只能选出四个位于不同行不同列的零元素,但n = 5 , 最优指派还无法看出。此时等价变换还可进行下去。步骤如下: (1) 对未选出 0 元素的行打∨ ; (2) 对∨ 行中 0 元素所在列打∨ ; (3) 对∨ 列中选中的 0 元素所在行打∨ ;

重复(2)、(3)直到无法再打∨ 为止。

可以证明,若用直线划没有打 ∨ 的行与打 ∨ 的列,就得到了能够覆盖住矩阵中所 有零元素的最少条数的直线集合,找出未覆盖的元素中的最小者,令 ∨ 行元素减去此 数,∨ 列元素加上此数,则原先选中的 0 元素不变,而未覆盖元素中至少有一个已转 变为 0,且新矩阵的指派问题与原问题也等价。上述过程可反复采用,直到能选取出足 够的 0 元素为止。例如,对例 5 变换后的矩阵再变换,第三行、第五行元素减去 2,第 一列元素加上 2,得

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡

0 4 1 4 0 11 8 0 0 4 0 8 3 5 3 4 3 0 0 0 7 0 2 0 2

现在已可看出,最优指派为 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛

2 4 1 3 5 1 2 3 4 5 。

§4 对偶理论与灵敏度分析 4.1 原始问题和对偶问题

考虑下列一对线性规划模型: c x T max s.t. Ax ≤ b, x ≥ 0 (P)

b y T min s.t. A y ≥ c, y ≥ 0 T (D)

-8-

称(P)为原始问题,(D)为它的对偶问题。

不太严谨地说,对偶问题可被看作是原始问题的“行列转置”:

(1) 原始问题中的第 j 列系数与其对偶问题中的第 j 行的系数相同;

(2) 原始目标函数的各个系数行与其对偶问题右侧的各常数列相同;

(3) 原始问题右侧的各常数列与其对偶目标函数的各个系数行相同;

(4) 在这一对问题中,不等式方向和优化方向相反。

考虑线性规划:

min c x s.t. Ax = b, x ≥ 0 T

把其中的等式约束变成不等式约束,可得 min s.t. , ≥ 0 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − ≥ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − x b b x A A c x T

它的对偶问题是

[] [ ] c y y A A y y b b T T T T ≤⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −

2 1 2 1 max s.t.

其中 1 y 和 2 y 分别表示对应于约束 Ax ≥ b 和 − Ax ≥ −b 的对偶变量组。令 1 2 y = y − y , 则上式又可写成

b y A y c T T max s.t. ≤

原问题和对偶的对偶约束之间的关系: min max

⎪ ⎩ ⎪ ⎨ ⎧ ≤ ≥

无限制 变量 0 0

⎪ ⎩ ⎪ ⎨ ⎧ = ≥ ≤

0 0 0

行约束

⎪ ⎩ ⎪ ⎨ ⎧ = ≤ ≥

0 0 0

行约束

⎪ ⎩ ⎪ ⎨ ⎧ ≤ ≥

无限制 变量 0 0

4.2 对偶问题的基本性质 1o 对称性:对偶问题的对偶是原问题。 2o 弱对偶性:若 x 是原问题的可行解, y 是对偶问题的可行解。则存在

c x b y T T ≤ 。 3o 无界性:若原问题(对偶问题)为无界解,则其对偶问题(原问题)无可行解。 4o 可行解是最优解时的性质:设 xˆ 是原问题的可行解, yˆ 是对偶问题的可行解, 当c x b y T T ˆ = ˆ 时, xˆ, yˆ 是最优解。 5o 对偶定理:若原问题有最优解,那么对偶问题也有最优解;且目标函数值相同。 6o 互补松弛性:若 xˆ, yˆ 分别是原问题和对偶问题的最优解,则 yˆ (Axˆ − b) = 0, xˆ (A yˆ − c) = 0 T T T

例 10 已知线性规划问题 min 2 1 3 2 5 3 2 4 3 5 ω = x + x + x + x + x s.t. x1 + x2 + 2x3 + x4 + 3x5 ≥ 4

-9-

2x1 − x2 + 3x3 + x4 + x5 ≥ 3 x j ≥ 0, j = 1,2,L,5

已知其对偶问题的最优解为 ; 5 5 3 , 5 4 * 2 * y1 = y = z = 。试用对偶理论找出原问题的最优 解。

解 先写出它的对偶问题 1 2 max z = 4 y + 3y 2 2 y1 + y2 ≤ ① 3 y1 − y2 ≤ ② 2y1 + 3y3 ≤ 5 ③ 2 y1 + y2 ≤ ④ 3 3 y1 + y2 ≤ ⑤ , 0 y1 y2 ≥

将 * 2 * 1 y , y 的值代入约束条件,得②,③,④为严格不等式;由互补松弛性得

0 * 4 * 3 * x2 = x = x = 。因 , 0 * 2 * y1 y > ;原问题的两个约束条件应取等式,故有

3 4 * 5 * x1 + x =

2 3 * 5 * x1 + x =

求解后得到 1, 1 * 5 * x1 = x = ;故原问题的最优解为 [1 0 0 0 1]'; 5 * * X = ω = 。 4.3 灵敏度分析

在以前讨论线性规划问题时,假定 ij i j a ,b ,c 都是常数。但实际上这些系数往往是估 计值和预测值。如市场条件一变, j c 值就会变化;aij 往往是因工艺条件的改变而改变;

bi 是根据资源投入后的经济效果决定的一种决策选择。因此提出这样两个问题:当这 些系数有一个或几个发生变化时,已求得的线性规划问题的最优解会有什么变化;或者 这些系数在什么范围内变化时,线性规划问题的最优解或最优基不变。这里我们就不讨 论了。 4.4 参数线性规划

参数线性规划是研究 ij i j a ,b ,c 这些参数中某一参数连续变化时,使最优解发生变化 的各临界点的值。即把某一参数作为参变量,而目标函数在某区间内是这参变量的线性 函数,含这参变量的约束条件是线性等式或不等式。因此仍可用单纯形法和对偶单纯形 法进行分析参数线性规划问题。

§5 投资的收益和风险 5.1 问题提出

市场上有 n 种资产 i s (i =1,2,L,n )可以选择,现用数额为 M 的相当大的资金 作一个时期的投资。这 n 种资产在这一时期内购买 i s 的平均收益率为 ir ,风险损失率为

qi ,投资越分散,总的风险越少,总体风险可用投资的 i s 中最大的一个风险来度量。

-1 0-

购买 i s 时要付交易费,(费率 pi ),当购买额不超过给定值ui 时,交易费按购买ui

计算。另外,假定同期银行存款利率是 0r ,既无交易费又无风险。(r0 = 5%)

已知 n = 4 时相关数据如表 1。

表 1

i s ir (%) qi pi (%) ui (元)

1s 28 2.5 1 103

2 s 21 1.5 2 198

3 s 23 5.5 4.5 52

4 s 25 2.6 6.5 40

试给该公司设计一种投资组合方案,即用给定资金 M ,有选择地购买若干种资产 或存银行生息,使净收益尽可能大,使总体风险尽可能小。 5.2 符号规定和基本假设

符号规定:

i s :第i 种投资项目,如股票,债券

i pi qi r, , :分别为 i s 的平均收益率,交易费率,风险损失率

ui : i s 的交易定额

0r :同期银行利率

i x :投资项目 i s 的资金

a :投资风险度

Q :总体收益

基本假设: 1. 投资数额 M 相当大,为了便于计算,假设 M =1; 2. 投资越分散,总的风险越小; 3. 总体风险用投资项目 i s 中最大的一个风险来度量; 4. n 种资产 i s 之间是相互独立的; 5. 在投资的这一时期内, i pi qi r, , , 0r 为定值,不受意外因素影响; 6. 净收益和总体风险只受 i pi qi r, , 影响,不受其它因素干扰。 5.3 模型的分析与建立 1. 总体风险用所投资的 i s 中最大的一个风险来衡量,即 max{q x | i 1,2, ,n} i i = L 2.购买 i s 所付交易费是一个分段函数,即 交易费

4. 模型简化 a) 在实际投资中,投资者承受风险的程度不一样,若给定风险一个界限 a ,使最 大的一个风险 a M q xi i ≤ ,可找到相应的投资方案。这样把多目标规划变成一个目标的线 性规划。

模型一 固定风险水平,优化收益 ∑

b) 若投资者希望总盈利至少达到水平 k 以上,在风险最小的情况下寻求相应的投 资组合。

模型二 固定盈利水平,极小化风险

c) 投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资 组合。因此对风险、收益分别赋予权重 s(0 < s ≤1)和(1− s) ,s 称为投资偏好系数。

(1 ) , 0, 0,1,2,L, 5.4 模型一的求解

模型一为: T min f ( 0.05, 0.27, 0.19, 0.185, 0.185)(x , x , x , x , x ) = − − − − − 0 1 2 3 4

-12-

s.t.

⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ≥ = ≤ ≤ ≤ ≤ + + + + =

0 ( 0,1, ,4) 0.026 0.055 0.015 0.025 1.01 1.02 1.045 1.065 1

4 3 2 1 0 1 2 3 4

x i L

x a x a x a x a x x x x x

i

由于 a 是任意给定的风险度,到底怎样没有一个准则,不同的投资者有不同的风险 度。我们从 a = 0 开始,以步长Δa = 0.001进行循环搜索,编制程序如下:

clc,clear

a=0;

hold on

while a

c=[-0.05,-0.27,-0.19,-0.185,-0.185];

A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];

b=a*ones(4,1);

Aeq=[1,1.01,1.02,1.045,1.065];

beq=1;

LB=zeros(5,1);

[x,Q]=linprog(c,A,b,Aeq,beq,LB);

Q=-Q;

plot(a,Q,'*r');

a=a+0.001;

end

xlabel('a'),ylabel('Q')

5.5 结果分析 1. 风险大,收益也大。 2.当投资越分散时,投资者承担的风险越小,这与题意一致。即:

冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。 3.在 a = 0.006 附近有一个转折点,在这一点左边,风险增加很少时,利润增长 很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特 殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约是 a = 0.6% ,

Q = 20%,所对应投资方案为:

风险度 a = 0.006 ,收益Q = 0.2019,x0 = 0, 0.24 x1 = , 0.4 x2 = ,x3 = 0.1091,

0.2212 x4 = 。

习 题 一 1.试将下述问题改写成线性规划问题:

⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∑ ∑ ∑

= = =

m i in i m i i i m i i i x

a x a x a x

i 1 1 2 1 1 max min , ,L,

⎩ ⎨ ⎧ ≥ = + + + =

x i m x x x

i m

0, 1, , 1 st. 1 2

L L 2.试将下列问题改写成线性规划问题:

-13-

=

=

n j j j z c x

1

max | |

⎪ ⎩ ⎪ ⎨ ⎧ ∑ = =

=

j 取值无约束

n j ij j i

x a x b i m

1

( 1,2, , ) st. L

3.线性回归是一种常用的数理统计方法,这个方法要求对图上的一系列点

( , ),( , ), ,( , ) 1 1 2 2 n n x y x y L x y 选配一条合适的直线拟合。方法通常是先定直线方程为

y = a + bx,然后按某种准则求定 a,b 。通常这个准则为最小二乘法,但也可用其他准 则。试根据以下准则建立这个问题的线性规划模型: ∑

=

− +

n i i b i y a x

1

min | ( ) | 4.某厂生产三种产品 I,II,III。每种产品要经过 A, B 两道工序加工。设该厂有 两种规格的设备能完成 A 工序,它们以 1 2 A , A 表示;有三种规格的设备能完成 B 工序, 它们以 1 2 3 B , B , B 表示。产品 I 可在 A, B 任何一种规格设备上加工。产品 II 可在任何规 格的 A 设备上加工,但完成 B 工序时,只能在 B1设备上加工;产品 III 只能在 A2 与 B2

设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有 效台时以及满负荷操作时机床设备的费用如表 2,求安排最优的生产计划,使该厂利润 最大。

表 2

产 品 设备 I II III 设备有效台时 满负荷时的

设备费用(元)

A1

A2

B1

B2

B3 5 7 6 4 7 10 9 8 12 11 6000 10000 4000 7000 4000 300 321 250 783 200

原料费(元/件)

单 价(元/件) 0.25 1.25 0.35 2.00 0.50 2.80

5.有四个工人,要指派他们分别完成 4 项工作,每人做各项工作所消耗的时间如 表 3。

表 3 工作 工人 A B C D

甲 15 18 21 24

乙 19 23 22 18

丙 26 17 16 19

丁 19 21 23 17

问指派哪个人去完成哪项工作,可使总的消耗时间为最小?

-14-

6.某战略轰炸机群奉命摧毁敌人军事目标。已知该目标有四个要害部位,只要摧 毁其中之一即可达到目的。为完成此项任务的汽油消耗量限制为 48000 升、重型炸弹

48 枚、轻型炸弹 32 枚。飞机携带重型炸弹时每升汽油可飞行 2 千米,带轻型炸弹时每 升汽油可飞行 3 千米。又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路 程汽油消耗(空载时每升汽油可飞行 4 千米)外,起飞和降落每次各消耗 100 升。有关 数据如表 4 所示。

表 4

摧毁可能性 要害部位 离机场距离

(千米) 每枚重型弹 每枚轻型弹 1 2 3 4 450 480 540 600 0.10 0.20 0.15 0.25 0.08 0.16 0.12 0.20

为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案,要求建立这个问 题的线性规划模型。 7.用 Matlab 求解下列线性规划问题: max 3 1 2 3 z = x − x − x s.t.

⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ≥ − + = − + + ≥ − + ≤

, , 0 2 1 4 2 3 2 11

1 2 3 1 3 1 2 3 1 2 3

x x x x x x x x x x x

8.用 Matlab 求解下列规划问题: min | | 2 | | 3 | | 4 | | 1 2 3 4 z = x + x + x + x s.t. x1 − x2 − x3 + x4 = 0 x1 − x2 + x3 −3x4 =1 2 1 x1 − x2 − 2x3 + 3x4 = − 9.一架货机有三个货舱:前舱、中仓和后舱。三个货舱所能装载的货物的最大重 量和体积有限制如表 5 所示。并且为了飞机的平衡,三个货舱装载的货物重量必须与其 最大的容许量成比例。

表 5 货舱数据 前舱 中仓 后舱

重量限制(吨) 10 16 8

体积限制(立方米) 6800 8700 5300

现有四类货物用该货机进行装运,货物的规格以及装运后获得的利润如表 6。

表 6 货物规格及利润表 重量(吨) 空间(立方米/吨) 利润(元/吨)

货物 1 18 480 3100

货物 2 15 650 3800

货物 3 23 580 3500

货物 4 12 390 2850

-15-

!!!!!!!!!!

点击链接加入资料群聊icon-default.png?t=N7T8https://qm.qq.com/q/NGl6WD0Bky

假设:

(1)每种货物可以无限细分;

(2)每种货物可以分布在一个或者多个货舱内;

(3)不同的货物可以放在同一个货舱内,并且可以保证不留空隙。

问应如何装运,使货机飞行利润最大?

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值