使用PyTorch框架训练利用建筑物砖块、混凝土损害分割与检测数据集进行模型训练 识别墙上绿荫 砖块 裂纹 破损砖块

使用PyTorch框架训练利用建筑物砖块、混凝土损害分割与检测数据集进行模型训练 识别墙上绿荫 砖块 裂纹 破损砖块

建筑物砖块、混凝土损害分割与检测数据集
5702张,yolo和voc两种标注
4类,标注数量:
3-墙上绿荫: 7863
3 0 0 0 1 1 1 1 0 0 0-砖块: 11790
2-裂纹: 7110
1-破损砖块: 2837
image num: 5702

在这里插入图片描述

数据集描述

建筑物的砖块和混凝土损害的分割与检测,总共包含5702张图像,标注格式YOLO和VOC两种。了四种不同的损害类型,在这里插入图片描述

表格表示

类别标注数量
墙上绿荫7863
砖块11790
裂纹7110
破损砖块2837
总计29600

在这里插入图片描述

利用数据集进行模型训练,包括数据加载、模型定义、训练、评估等步骤。我们将使用PyTorch框架作为示例。
在这里插入图片描述

1. 环境设置

确保安装了必要的库:

pip install torch torchvision opencv-python numpy
2. 数据准备

假设你的数据集已经按照VOC格式组织好,并且每张图片都有对应的标注文件。

创建自定义Dataset类
import os
import cv2
import torch
from torch.utils.data import Dataset

class BuildingDamageDataset(Dataset):
    def __init__(self, root, split='train', transform=None):
        self.root = root
        self.split = split
        self.transform = transform
        
        self.images_dir = os.path.join(root, 'JPEGImages')
        self.labels_dir = os.path.join(root, 'Annotations')
        
        with open(os.path.join(root, f'{split}.txt'), 'r') as file:
            self.image_files = [line.strip() for line in file.readlines()]
    
    def __len__(self):
        return len(self.image_files)
    
    def __getitem__(self, idx):
        img_path = os.path.join(self.images_dir, self.image_files[idx] + '.jpg')
        label_path = os.path.join(self.labels_dir, self.image_files[idx] + '.xml')
        
        image = cv2.imread(img_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        
        # 解析XML文件获取标注信息(简化版)
        # 这里需要根据实际情况解析XML文件并提取bounding boxes和labels
        boxes, labels = parse_voc_xml(label_path)  # 需要实现parse_voc_xml函数
        
        target = {
            'boxes': torch.tensor(boxes, dtype=torch.float32),
            'labels': torch.tensor(labels, dtype=torch.int64)
        }
        
        if self.transform:
            image, target = self.transform(image, target)
        
        return image, target
3. 模型定义

使用预训练的Faster R-CNN模型进行微调:

from torchvision.models.detection.faster_rcnn import FastRCNNPredictor

def get_model(num_classes):
    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
    return model
4. 训练流程

定义训练循环,并使用train_one_epochevaluate函数来训练和评估模型:

from torch.utils.data import DataLoader
from references.detection.engine import train_one_epoch, evaluate
from references.detection.utils import collate_fn

dataset_train = BuildingDamageDataset('path/to/data', split='train', transform=get_transform(train=True))
dataloader_train = DataLoader(dataset_train, batch_size=2, shuffle=True, num_workers=4, collate_fn=collate_fn)

dataset_val = BuildingDamageDataset('path/to/data', split='val', transform=get_transform(train=False))
dataloader_val = DataLoader(dataset_val, batch_size=2, shuffle=False, num_workers=4, collate_fn=collate_fn)

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = get_model(num_classes=5)  # 包括背景在内的5个类别
model.to(device)

params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)

num_epochs = 10
for epoch in range(num_epochs):
    train_one_epoch(model, optimizer, dataloader_train, device, epoch, print_freq=10)
    evaluate(model, dataloader_val, device=device)

在这里插入图片描述

、基本框架,帮助你开始使用该数据集进行建筑物损害检测模型的训练。请根据实际需求调整代码细节,比如数据解析逻辑、超参数设置等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值