使用PyTorch框架训练利用建筑物砖块、混凝土损害分割与检测数据集进行模型训练 识别墙上绿荫 砖块 裂纹 破损砖块
建筑物砖块、混凝土损害分割与检测数据集
5702张,yolo和voc两种标注
4类,标注数量:
3-墙上绿荫: 7863
3 0 0 0 1 1 1 1 0 0 0-砖块: 11790
2-裂纹: 7110
1-破损砖块: 2837
image num: 5702
数据集描述
建筑物的砖块和混凝土损害的分割与检测,总共包含5702张图像,标注格式YOLO和VOC两种。了四种不同的损害类型,
表格表示
类别 | 标注数量 |
---|---|
墙上绿荫 | 7863 |
砖块 | 11790 |
裂纹 | 7110 |
破损砖块 | 2837 |
总计 | 29600 |
利用数据集进行模型训练,包括数据加载、模型定义、训练、评估等步骤。我们将使用PyTorch框架作为示例。
1. 环境设置
确保安装了必要的库:
pip install torch torchvision opencv-python numpy
2. 数据准备
假设你的数据集已经按照VOC格式组织好,并且每张图片都有对应的标注文件。
创建自定义Dataset类
import os
import cv2
import torch
from torch.utils.data import Dataset
class BuildingDamageDataset(Dataset):
def __init__(self, root, split='train', transform=None):
self.root = root
self.split = split
self.transform = transform
self.images_dir = os.path.join(root, 'JPEGImages')
self.labels_dir = os.path.join(root, 'Annotations')
with open(os.path.join(root, f'{split}.txt'), 'r') as file:
self.image_files = [line.strip() for line in file.readlines()]
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_path = os.path.join(self.images_dir, self.image_files[idx] + '.jpg')
label_path = os.path.join(self.labels_dir, self.image_files[idx] + '.xml')
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 解析XML文件获取标注信息(简化版)
# 这里需要根据实际情况解析XML文件并提取bounding boxes和labels
boxes, labels = parse_voc_xml(label_path) # 需要实现parse_voc_xml函数
target = {
'boxes': torch.tensor(boxes, dtype=torch.float32),
'labels': torch.tensor(labels, dtype=torch.int64)
}
if self.transform:
image, target = self.transform(image, target)
return image, target
3. 模型定义
使用预训练的Faster R-CNN模型进行微调:
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
def get_model(num_classes):
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
4. 训练流程
定义训练循环,并使用train_one_epoch
和evaluate
函数来训练和评估模型:
from torch.utils.data import DataLoader
from references.detection.engine import train_one_epoch, evaluate
from references.detection.utils import collate_fn
dataset_train = BuildingDamageDataset('path/to/data', split='train', transform=get_transform(train=True))
dataloader_train = DataLoader(dataset_train, batch_size=2, shuffle=True, num_workers=4, collate_fn=collate_fn)
dataset_val = BuildingDamageDataset('path/to/data', split='val', transform=get_transform(train=False))
dataloader_val = DataLoader(dataset_val, batch_size=2, shuffle=False, num_workers=4, collate_fn=collate_fn)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = get_model(num_classes=5) # 包括背景在内的5个类别
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
num_epochs = 10
for epoch in range(num_epochs):
train_one_epoch(model, optimizer, dataloader_train, device, epoch, print_freq=10)
evaluate(model, dataloader_val, device=device)
、基本框架,帮助你开始使用该数据集进行建筑物损害检测模型的训练。请根据实际需求调整代码细节,比如数据解析逻辑、超参数设置等。