(python)卡尔曼滤波算法,对数据进行平滑处理以及降噪

卡尔曼滤波算法(python),对数据进行平滑处理以及降噪。


以下文字及代码仅供参考。


在这里插入图片描述
卡尔曼滤波是一种用于估计动态系统状态的算法,特别适用于处理带有噪声的数据。它通过预测和更新两个步骤来估计系统的状态,并且可以有效地对数据进行平滑处理和降噪。在这里插入图片描述

定义了一个use_kalman函数来应用卡尔曼滤波。需要实现具体的卡尔曼滤波算法。示例代码,包括卡尔曼滤波的实现和数据可视化:

完整代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import block_diag

def kalman_filter(data, R=0.01, Q=0.0001):
    n_iter = len(data)
    sz = (n_iter,)  # size of array
    
    # Allocate space for arrays
    xhat = np.zeros(sz)      # a posteri estimate of x
    P = np.zeros(sz)         # a posteri error estimate
    xhatminus = np.zeros(sz) # a priori estimate of x
    Pminus = np.zeros(sz)    # a priori error estimate
    K = np.zeros(sz)         # gain or blending factor
    
    # Initial guesses
    xhat[0] = data[0]
    P[0] = 1.0
    
    for k in range(1, n_iter):
        # Time update (prediction)
        xhatminus[k] = xhat[k-1]
        Pminus[k] = P[k-1] + Q
        
        # Measurement update (correction)
        K[k] = Pminus[k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值