OpenAI 宣布将 GPT-4 引入内容审核系统,该系统有哪些亮点?

在数字化时代背景下,内容安全议题日益凸显其重要性。于9月26日,OpenAI正式揭晓了其最新研发的多模态内容审核模型——“omni-moderation-latest”,该模型依托前沿的GPT-4o技术,实现了对有害文本及图像的高效精准识别。此番更新,无疑为开发者们装备了更为强大的武器,助力他们构建起坚不可摧的审核防线。

新型模型的独到之处,在于其能够同时处理文本与图像输入,且在应对非英语内容时展现出更为卓越的性能。相较于以往版本,“omni-moderation-latest”不仅在识别精度上实现了飞跃,更拓宽了有害内容的检测范围,涵盖了暴力、自残、性内容等多个敏感领域,为用户营造了一个更为安全可靠的交流环境。

自2022年OpenAI推出内容审核API(即Moderation API)以来,随着人工智能应用的广泛普及与深入生产环节,自动化审核系统所承载的内容量与类型均呈现爆发式增长。当前,包括Grammarly、ElevenLabs在内的众多企业,均已采纳该API作为保障用户安全、抵御不良内容的坚固盾牌。

“omni-moderation-latest”模型的卓越之处,具体体现在以下几个维度:

  • 多模态有害内容分类:该模型能够综合评估文本与图像的组合,精准识别其中潜藏的暴力、自残及性相关风险。
  • 文本审核新增类别:新增了与违法及暴力相关的两类文本审核,进一步强化了审核体系的全面性。
  • 非英语内容检测精度提升:在40种语言的测试中,其准确率实现了42%的显著提升,尤其在低资源语言上的表现更是令人瞩目。

对于开发者而言,这款全新的审核模型依旧保持了免费开放的原则,内容审核API的接入亦十分便捷。OpenAI寄望于此次升级,能够激励更多开发者携手并进,共同利用最新的科研成果与安全系统,为用户打造一个更加友善、安全的在线世界。

推荐一个可以订阅国外的ChatGPT4和所有AI产品的平台:WildCard

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值