【Java数据结构与算法】Day2-高级排序(希尔、归并、快速、计数

描述:

归并排序是利用归并的思想实现的排序方法,该算法采用经典的分治策略即将问题成一些小的问题然后递归求解,而的阶段则将分的阶段得到的各答案 “修补” 在一起,即分而治之 。

归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。java中Arrays.sort()采用了 名为TimSort的排序算法,就是归并排序的优化版本。每次合并操作的平均时月复杂度为O(n),而完全二叉树的深度为|1og2n|。总的平均时间复杂度为O(nlogn)。而旦,归并排序的最好,最坏,平均时间复杂度均为o(nlogn)。

归井排序核心思想是先分再治,具体算法描述如下:

先将未排序数组/2进行分组,然后再将分好组的数组继续/2再次分组,直到无法分组,这个就是分的过程。

然后再将之后把两个数组大小为1的合并成一个大小为2的,再把两个大小为2的合并成4的,同时在合并的过程中完成数组的排列,最终直到全部小的数组合并起来,这个就是治的过程。

在这里插入图片描述

实现

分解1: 先实现分的思想,将数组分解进行实现

先获取数组的中轴,然后以中轴将数组分为两个部分

使用递归分别执行左右两部分分解

public static void main(String[] args) {
        int[] arrs = {8,6,3,7,2,5,4,1};
        mergeSort(arrs,0,arrs.length-1);
    }

    //实现归并排序
    public static void mergeSort(int[] arrs, int first, int last){
        //实现递归推出的条件
        if(first >= last){
            return;
        }
        //求出当前数组的中间值
        int mid = (first + last)/2;

        //将左边的数组继续分解
        mergeSort(arrs,first,mid);
        //将右边的数组继续分解
        mergeSort(arrs,mid + 1, last);

        //输出分组情况
        //先输出左边的数组
        for (int i = first; i <= mid; i++){
            System.out.print(arrs[i] + " ");
        }
        System.out.print("--------");
        //输出右边的数组
        for (int i = mid + 1; i <= last; i++) {
            System.out.print(arrs[i] + " ");
        }

        System.out.println(" ");

    }

分解2: 实现具体治的过程,将左右两个数组合并到一个临时数组中

分别设计两指针i和j,遍历左右两个数组,取出元素进行比较,将小的元素放入到临时数组中。

然后将左右剩下的元素放入到数组中

将排序好的临时数组中的元素返回到未排序的数组中

public static void main(String[] args) {
        int[] arrs = {8,6,3,7,2,5,4,1};
        mergeSort(arrs,0,arrs.length-1);
        //输出排序结果
        for (int i = 0; i < arrs.length; i++) {
            System.out.print(arrs[i] + " ");
        }
    }

    //实现归并排序
    public static void mergeSort(int[] arrs, int first, int last) {
        //实现递归推出的条件
        if (first >= last) {
            return;
        }
        //求出当前数组的中间值
        int mid = (first + last)>>>1;

        //将左边的数组继续分解
        mergeSort(arrs, first, mid);
        //将右边的数组继续分解
        mergeSort(arrs, mid + 1, last);

        //治,实现插入并完成排序
        int[] temp = new int[last + 1];
        //定义两个指针
        int i = first;//左边数组的遍历指针
        int j = mid + 1;//右边数组的遍历指针
        int t = 0;//临时数组的指针
        //遍历左右两个数组,将较小的元素插入到临时数组中
        while (i <= mid && j <= last) {
            if (arrs[i] <= arrs[j]) {
                //将左边的指针指向的元素插入到临时数组中
                temp[t++] = arrs[i++];
            } else {
                //将右边的指针指向的元素插入到临时数组中
                temp[t++] = arrs[j++];
            }
        }
        //再将左右剩余的元素插入到临时数组中
        while (i<=mid){
            temp[t++] = arrs[i++];
        }
        while (j<=last){
            temp[t++] = arrs[j++];
        }

        //还需要将临时数组中的元素复制到原始数组中
        //先将t重置
        t = 0;
        //将t指向的值,复制到first指向的原始数组的位置
        while (first <= last){
            arrs[first++] = temp[t++];
        }
    }

3.快速排序

描述:

快速排序是对冒泡排序的一种改进,通过分而治之的思想减少排序中交换和遍历的次数,整个过程可以通过递归的方式完成。

具体描述如下:

1.首先通过比较算法,找到基准数,比较过程通过交换最终达到基准数左边的数字都比右边的小。

2.然后以基准数作为中轴,将数组分为两部分,分别执行步骤1的算法(可以通过递归实现),直到无法再次分割排序完毕

递归

一个含直接或间接调用本函数语句的函数被称之为递归函数,他必须满足以下两个条件:

1)在每一次调用自己时,必须是(在某种意义上)更接近于解;

2)必须有一个终止处理或计算的准则;

基本格式

void func()
{
	//递归条件
	if(condition)
		func();
	else
		//退出递归
}

实现

分解1: 创建左右两个指针,将最后一个值作为基准值,通过不断交换将数组分为两部分,左边的比右边的要小。

  • 先判断左指针和基准的值,如果小于等于就向后移动,直到遇到比基准值大的值
  • 再判断右边指针和基准值,如果大于等于就向前移动,直到遇到比基准值小的值
  • 然后交换左右指针的值
  • 循环上述操作,直到左右指针重合,然后交换重合值和基准值
public static void main(String[] args) {
        int[] arrs = {3,9,8,7,2,5,4,1,6};
        //执行快速排序
        quickSort(arrs);

        for (int i = 0; i < arrs.length; i++) {
            System.out.print(arrs[i] + " ");
        }
    }

    //定义快速排序方法
    public static void quickSort(int[] arrs){
        //定义左指针
        int left = 0;
        //定义右指针
        int right = arrs.length - 1;
        //定义基准值
        int pos = arrs.length - 1;
        while (left != right){
            //判断左指针是否比基准值大,如果大就停止移动
            while(arrs[left] <= arrs[pos]){
                left++;
            }

            if(left == right)
                break;

            //判断右指针是否比基准值小,如果小就停止移动
            while (arrs[right] >= arrs[pos]){
                right--;
            }
            if(left < right){
                //交换左右指针指向的值
                int temp = arrs[left];
                arrs[left] = arrs[right];
                arrs[right] = temp;
            }
        }
        //当left和right重合之后,需要将重合的值和基准值进行交换
        int temp = arrs[left];
        arrs[left] = arrs[pos];
        arrs[pos] = arrs[left];
    }

在这里插入图片描述

分解2: 将以left和right的重复位置作为中轴,将数组分为两部分,左右分别执行分解1的操作,直到排序完成

public static void main(String[] args) {
        int[] arrs = {3,9,8,7,2,5,4,1,6};
        //执行快速排序
        quickSort(arrs, 0, arrs.length-1);

        for (int i = 0; i < arrs.length; i++) {
            System.out.print(arrs[i] + " ");
        }
    }

    //定义快速排序方法
    public static void quickSort(int[] arrs, int first, int last){
        //设置一下递归退出条件
        if(first >= last)
            return;
        //定义左指针
        int left = first;
        //定义右指针
        int right = last;
        //定义基准值
        int pos = last;
        //当left不等于right
        while (left != right){
            //判断左指针是否比基准值大,如果大就停止移动
            while(arrs[left] <= arrs[pos]){
                left++;
            }
            //判断右指针是否比基准值小,如果小就停止移动
            while (arrs[right] >= arrs[pos] && left < right){
                right--;
            }
            if(left < right){
                //交换左右指针指向的值
                int temp = arrs[left];
                arrs[left] = arrs[right];
                arrs[right] = temp;
            }
        }
        //当left和right重合之后,需要将重合的值和基准值进行交换
        int temp = arrs[left];
        arrs[left] = arrs[pos];
        arrs[pos] = temp;

        //将左边的数组执行快速排序
        quickSort(arrs, first,left - 1);

        //将右边的数组执行快速排序
        quickSort(arrs,right + 1,last);
    }

4.计数排序

描述:

计数排序是一个非基于比较的排序算法,该算法于1954年由Harold H.Seward,提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为o(n+k)(其中k是整数的范围),快于任何比较排序算法。当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(nlog(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(nlog(n)),如归并排序,堆排序)

计数排序是一种适合于最大值和最小值的差值不是不是很大的排序,也就是说重复的数据会比较多的情况。

实现

分解1: 找到最大的数字,并且以数字的大小创建一个统计数组

	//分解1:根据最大值创建统一数组
    //遍历数组找到最大的值
    int max = arrs[0];

    for (int i = 0; i < arrs.length; i++) {
        if(arrs[i] > max){
            max = arrs[i];
        }
    }
    //根据最大值创建统一数组
    int[] countArrs = new int[max];

分解2: 遍历未排序的数组,统计每个数字出现的次数,根据下标添加到新的统计数组中

for (int i = 0; i < arrs.length; i++) {
            //以arrs[i]作为下标++
            countArrs[arrs[i]]++;
        }

分解3: 将排序的结果返回到原先的数组中

public static void main(String[] args) {
        int[] arrs = {0,2,1,3,0,2,0,1,1};
        //分解1:根据最大值创建统一数组
        //遍历数组找到最大的值
        int max = arrs[0];

        for (int i = 0; i < arrs.length; i++) {
            if(arrs[i] > max){
                max = arrs[i];
            }
        }
        //分解2:
        //根据最大值创建统一数组
        int[] countArrs = new int[max + 1];//注意考虑0,要加一个
        //遍历原先数组
        for (int i = 0; i < arrs.length; i++) {
            //以arrs[i]作为下标++
            countArrs[arrs[i]]++;
        }

        //分解3:将统计数组对应的下标的数字返回到排序数组中
        int k = 0;//统计数组的下标
        int index = 0;//排序数组的下标
        while (k < countArrs.length){
            //判断统计数组中的值是否大于0
            while(countArrs[k] > 0){
                //将对应的下标,返回到排序数组中
                arrs[index++] = k;
                //统计的数字减少一个
                countArrs[k]--;
            }
            k++;
        }
        //输出结果
        for (int i = 0; i < arrs.length; i++) {
            System.out.print(arrs[i] + " ");

        }
    }

统计数组优化

如果待排序的数字很大,那么在创建数组的时候会浪费没有空间,同时也会导致创建的数组,所以需要进行优化;

可以通过使用最大数字减去最小数字求出需要数组的大小。

public static void main(String[] args) {
        int[] arrs = {90,92,91,93,90,92,90,91,91};
        //分解1:根据最大值创建统一数组
        //遍历数组找到最大和最小的值
        int max = arrs[0];
        int min = arrs[0];
        for (int i = 0; i < arrs.length; i++) {
            if(arrs[i] > max){
                max = arrs[i];
            }
            if(arrs[i] < min){
                min = arrs[i];
            }
        }
        //分解2:
        //根据最大值创建统一数组
        int[] countArrs = new int[max - min + 1];//注意考虑0,要加一个
        //遍历原先数组
        for (int i = 0; i < arrs.length; i++) {


![img](https://img-blog.csdnimg.cn/img_convert/1af6a689a66f6b7fd0d56cd335baf7ff.png)
![img](https://img-blog.csdnimg.cn/img_convert/4992f929d70268e8f67924563d348e8c.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
x = arrs[i];
            }
            if(arrs[i] < min){
                min = arrs[i];
            }
        }
        //分解2:
        //根据最大值创建统一数组
        int[] countArrs = new int[max - min + 1];//注意考虑0,要加一个
        //遍历原先数组
        for (int i = 0; i < arrs.length; i++) {


[外链图片转存中...(img-AKJpekQo-1726122788351)]
[外链图片转存中...(img-7vXZhkGy-1726122788352)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值