https://github.com/jhuangtw-dev/xg2xg
美国网友对这个大全给予了很高的评价:这份清单中列出的开源软件,不仅解决了硅谷大厂前员工的难处,也能为其他所有码农解除困惑。
在这套大全的指导下,任何一个工程师,都能获得类似在谷歌内部写代码的体验。xg2xg 上线仅仅一天就登上趋势榜,截至今天,已在 GitHub 收获 6200+ Star!
清单其中大部分替代软件是 Google 开源的项目,或者是受谷歌论文的启发,由开源软件基金会自己做的第三方实现。即使你从来没进过 Google 工作,也在享受着 Google 工程师们带来的福利。不禁让人感叹 “谷歌拯救世界”。
下面就让我们一起来看看这份清单吧。
开发工具一览
这份清单总共有两部分,前半部分介绍的是码农常用的开发工具,包括核心技术、基础设施、服务、开发运维等;后半部分则面向非技术人员。
核心技术工具
大数据处理工具
Google 内部工具:MapReduce;
替代品:Apache Hadoop、Spark
想要在上千台机器组成的大集群上、并行处理上 TB 级别的海量数据集,就要用到这类大规模数据处理工具了。
MapReduce,就是这类工具的先驱。Jeff Dean 等人 2004 年提出了这个分布式计算架构,最早在 Google 内部用来处理大规模数据的并行计算。Jeff Dean 还亲自为它撰写过使用指南。
而 Apache Hadoop 这个开源替代品,也是根据 Jeff Dean 当年的论文自行实现而成,能提供与 MapReduce 文件系统类似的功能。
如果想要更快的数据处理速度,还有 Apache Spark 供你选择。相对于 Hadoop 的 MapReduce 会在运行完工作后将中介数据存放到磁盘中,Spark 使用了存储器内运算技术,能在数据尚未写入硬盘时即在存储器内分析运算。
序列化工具
Google 内部:Protocol Buffer;
外部替代品:Protobuf、Thrift、Avro
这一组工具用于结构化数据序列化,上面这些,都是 xml 替代品,比它更小、更快、也更简单。
Protocol Buffer 和 Protobuf 都是 Google 开发的序列化格式(Serialization Format),github 上可以找到这个项目的源代码。
比起 XML 和 JSON,Protobuf 更小、更快,也更简洁,很适合做数据存储或 RPC 数据交换格式。只需要定义一次数据结构,就可以利用各种不同语言或者从各种不同数据流中对结构化数据进行轻松读写。
完全撇开 Google,也不是就没有别的选择了。其他厂商也有类似的序列化方案。
比如 Facebook 开发的 Thrift ,它与 Protobuf 基本一样。
Avro 同样也有 schema(也就是程序中结构化数据的定义),但是实现方式跟 Protobuf 和 Thrift 有很大区别。
由于数据不需要额外的标注,Avro 在序列化大量相同的数据时会比 Protobuf 和 Thrift 更有效率。不过在编码大量变化的数据时,因为 schema 会随数据一同存储,Avro 的效率会退化到 JSON 和 MessagePack 的级别。
看来在核心技术工具上,重回人间的前 Google 人还是有许多不错的选择的。
基础设施
大型集群管理系统
Google 内部:Borg;外部替代品:Kubernetes、Apache Mesos、HashiCorp Nomad
大型集群管理系统用于管理云平台中多个主机上的容器化的应用。
Borg 是 Google 内部的大型集群管理系统,现如今应用最广泛的服务编配系统 Kubernetes 就脱胎于 Borg。
Borg 让开发者能够不必操心资源管理的问题,做到跨多个数据中心的资源利用率最大化。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
011042573)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!