在非技术高等教育中的无代码AI集成:
最近的机器学习(ML)发展突显了其在各类领域中驱动价值的能力。然而,将ML引入社会科学等非技术学术项目中,由于其通常与计算机科学等技术领域相关,面临着挑战。为了克服这一障碍,在一门大学课程中引入了一种基于案例的无代码AI平台方法,适应不同教育背景的学生。这些平台简化了ML过程,使用户无需深入了解算法即可创建和部署模型,从而使非理工科学生也能够接触到ML。
这项研究在瑞典乌默奥大学的一门“业务AI”硕士课程中进行,探索了使用无代码AI在非技术项目中教授ML的有效性。通过定性数据收集,研究确定了其优点和挑战。无代码平台的易用性和实惠性是重要的优势,使学生能够收集数据并进行模型训练,而不受AI通常带来的技术障碍的影响。然而,研究还识别了些许挑战,例如在简化界面下确保学生对ML基础概念有足够的理解。这些发现为信息系统教育文献提供了新的见解,展示了如何将无代码AI工具有效地集成到非技术课程中。
探讨“轻量级”AI在教育中的应用:
ML涉及开发计算机用来识别数据模式并进行预测的模型,是各行业AI应用的关键部分。ML工作流程通常从创建训练数据集开始,算法处理这些数据以教机器识别模式,从而生成能够对新数据进行预测的模型。然而,开发有效的模型非常复杂,需要多次迭代和对数据的深入理解。这种复杂性常常对缺乏计算机科学专业知识的非技术专业人员构成挑战,使得将ML整合到他们的领域变得困难。
为应对此挑战,“轻量级”AI平台,即无代码AI应运而生,使没有广泛技术技能的人也能开发和部署ML模型。这些平台提供用户友好的云端工具,指导用户完成ML过程,只需极少量的编码。例如,在瑞典乌默奥大学的“业务