k-means-constrained:带有最小和最大聚类大小约束的K-means聚类算法
K-means聚类是一种广泛使用的无监督学习算法,用于将数据点划分为K个簇。然而,传统的K-means算法不允许用户控制每个簇的大小,这在某些应用场景中可能会导致不理想的结果。为了解决这个问题,k-means-constrained算法应运而生。
k-means-constrained是一种改进的K-means聚类实现,它允许用户为每个聚类指定最小和最大大小约束。这种方法在保持K-means高效性的同时,提供了更灵活的聚类控制。
算法原理
k-means-constrained的核心思想是修改K-means算法的聚类分配步骤。具体来说,它将聚类分配问题转化为最小成本流(Minimum Cost Flow, MCF)线性网络优化问题。这个优化问题通过成本缩放推送重标记(cost-scaling push-relabel)算法求解,该算法使用了Google的Operations Research工具中的SimpleMinCostFlow
实现,这是一个高效的C++实现。
这种方法的灵感来自Bradley等人的研究。k-means-constrained对原始的MCF网络进行了修改,使其不仅可以指定最小聚类大小,还可以指定最大聚类大小。
主要特点
-
大小约束: 允许用户为每个聚类指定最小和最大大小。
-
基于scikit-learn: 代码基于scikit-learn的
KMeans
实现,保持了相似的API,便于用户使用。 -
高效实现: 利用Google的Operations Research工具实现最小成本流算法,保证了计算效率。
-
灵活性: 可以根据具体应用需求调整聚类大小约束。
安装
k