1. 项目简介
本项目是一个基于深度学习的中文情感分析模型。其目标是通过分析社交媒体文本(如微博)中的情感倾向,识别出用户发布内容的情感类型(正面、中性或负面)。项目的数据集为某社交媒体平台的标注微博内容,模型使用LSTM(长短时记忆网络)对中文文本进行情感分类。首先,项目采用中文分词技术对文本进行预处理,并去除停用词,然后使用Word2Vec生成词向量。随后,模型将预训练的词向量作为嵌入层输入,通过LSTM对文本进行特征提取,并通过全连接层输出情感分类结果。模型采用了交叉熵损失函数进行损失计算,并使用Adam优化器进行参数优化。训练完成后,项目使用测试集进行模型评估,并输出分类的准确率。此模型可广泛应用于社交媒体内容分析、用户情感监测、市场情绪分析等场景,有助于进一步了解用户的真实情感和态度,从而提供更具针对性的服务或策略。
2.技术创新点摘要
- 数据预处理的优化: 项目对原始微博数据进行了有效的清洗和处理,包括去除缺失值、停用词过滤以及中文分词。为了提