项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。
《------往期经典推荐------》
项目名称
1.【基于CNN-RNN的影像报告生成】
2.【卫星图像道路检测DeepLabV3Plus模型】
3.【GAN模型实现二次元头像生成】
4.【CNN模型实现mnist手写数字识别】
5.【fasterRCNN模型实现飞机类目标检测】
6.【CNN-LSTM住宅用电量预测】
7.【VGG16模型实现新冠肺炎图片多分类】
8.【AlexNet模型实现鸟类识别】
9.【DIN模型实现推荐算法】
10.【FiBiNET模型实现推荐算法】
11.【钢板表面缺陷检测基于HRNET模型】
…
1. 项目简介
本项目旨在开发一个用于老年人跌倒监测的系统,利用现代计算机视觉技术和深度学习模型来实时分析人体姿态,并对潜在的跌倒行为进行检测和警报。本系统的核心是基于MediaPipe Pose模块的姿态检测技术,该模块由Google提供,能够高效地检测并追踪人体关键点。通过OpenCV进行图像处理与显示,实现对视频数据或实时摄像头的捕捉与分析。本项目分为带图形用户界面(GUI)和无界面的两个版本,方便用户选择适合的运行方式。在GUI版本中,使用Tkinter框架构建简洁直观的用户界面,支持用户通过视频文件上传或实时视频流进行姿态分析。无论哪种版本,系统均利用关键点坐标计算关节角度,判断人体状态(如行走、站立、跌倒或濒临跌倒等)。这一系统应用场景广泛,尤其适用于老年人护理、家庭监控及医疗健康等领域,为老年人提供全天候的安全保障,减少意外风险。系统通过姿态数据和预设的安全条件进行分析,结合实时反馈机制,提供准确且高效的跌倒监测。
2.技术创新点摘要
本项目在老年人跌倒监测系统中实现了一些关键的技术创新,主要体现在姿态检测和行为分析的方法上,结合了现代计算机视觉与深度学习技术,使系统在实时性和准确性方面具有显著的优势。
首先,本项目采用了MediaPipe的Pose模块,该模块利用深度学习技术实现人体关键点的高效检测和跟踪。MediaPipe Pose能够在多种设备上以较低的延迟进行实时分析,其内部集成了先进的姿态估计算法,能够对复杂背景下的人体姿态进行精准检测。项目通过调用MediaPipe Pose接口,实现对33个人体关键点的获取,并使用这些关键点进行姿态分析,如识别眼睛、髋部和脚跟的三维坐标。此外,通过OpenCV进行图像预处理与可视化,使得整个系统的实现更加高效和直观。
其次,创新点体现在系统使用了定制化的角度计算方法来检测人体姿态的变化。通过计算人体关键点之间的夹角(如髋部、眼睛、脚跟等之间的角度),系统可以有效区分不同的身体状态,如站立、行走、跌倒等。此种角度计算方法保证了检测的鲁棒性,即使在不同的体型或环境光照条件下也能保持较高的精度。此外,系统设计了多条件判别逻辑,通过结合多个角度和关键点坐标来分析行为状态,例如当角度大于某个阈值时,判断为站立,角度过小时则被标记为跌倒等。这种多重条件判别机制可以提高检测的准确性,降低误报率。
另外,系统实现了状态可视化与实时