Python-sqlparse解析SQL工具库一文详解(二)_sqlparse

一、基类-Statement

二、基类-TokenList

1. _get_repr_name()方法

2._pprint_tree()方法

3.get_token_at_offset(self, offset)

4.flatten(self)

5._token_matching(self, funcs, start=0, end=None, reverse=False)

6.token_first(self, skip_ws=True, skip_cm=False)

三、Identifier类

1.get_array_indices()

2.get_ordering()

3.get_typecast()

4.is_wildcard()

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢


前言

文接上篇内容:

Python-sqlparse解析SQL工具库一文详解

写此sqlparse库的目的还是寻找在python编程内可行的SQL血缘解析,JAVA去解析Hive的源码实践的话我还是打算放到后期来做,先把Python能够实现的先实现完。上篇系列讲述的基于antrl解析说是用python其实还是太牵强了,无非就是使用PyJnius调用JAVA的类方法来实现,没有多大的意义来牵扯到Python编程。主要是HiveSQL的底层就是JAVA代码,怎么改写还是绕不开JAVA的。不过上篇系列我有提到过sqlparse,其实这个库用来解析血缘的话也不是不可以,但是能够实现的功能是有限的,目前我实验还行,一些复杂超过千行的数据分析SQL没有测试过。做一些简单的血缘解析的话还是没有应该太大问题,后续我会在此基础之上开发尝试。


一、基类-Statement

此类作为基类存在有绝对的意义。parse函数解析转换的类型也是该类,众多处理方法也是根据此类来编写,那么此类必定承载着SQL分析的基础。

class Statement(TokenList):
    """Represents a SQL statement."""

    def get_type(self):
        """Returns the type of a statement.
        The returned value is a string holding an upper-cased reprint of
        the first DML or DDL keyword. If the first token in this group
        isn't a DML or DDL keyword "UNKNOWN" is returned.
        Whitespaces and comments at the beginning of the statement
        are ignored.
        """
        first_token = self.token_first(skip_cm=True)
        if first_token is None:
            # An "empty" statement that either has not tokens at all
            # or only whitespace tokens.
            return 'UNKNOWN'

        elif first_token.ttype in (T.Keyword.DML, T.Keyword.DDL):
            return first_token.normalized

        elif first_token.ttype == T.Keyword.CTE:
            # The WITH keyword should be followed by either an Identifier or
            # an IdentifierList containing the CTE definitions;  the actual
            # DML keyword (e.g. SELECT, INSERT) will follow next.
            fidx = self.token_index(first_token)
            tidx, token = self.token_next(fidx, skip_ws=True)
            if isinstance(token, (Identifier, IdentifierList)):
                _, dml_keyword = self.token_next(tidx, skip_ws=True)

                if dml_keyword is not None \
                        and dml_keyword.ttype == T.Keyword.DML:
                    return dml_keyword.normalized

        # Hmm, probably invalid syntax, so return unknown.
        return 'UNKNOWN'

此类只有一个方法就是返回一个获取此条SQL的DML类型,也就是SQL的功能类型:

query = 'CREATE TABLE AS Select a, col_2 as b from Table_A;select * from foo'
for each in sqlparse.parse(query):
    print(each.get_type())

里面的判断逻辑也是根据 Keyword.DML和Keyword.DDL来判断的。根据第一次获取到的token来判断。有了get_type那么我们要实现的SQL解析的第一步已经有了,首先就可以确定这个SQL的功能与用户的读写查改权限匹配了。先不急我们还需要知道如何解析成一颗树。

二、基类-TokenList

这个类就相当的大了,也正是我们了解解析成AST抽象解析树的关键所在了。源码就不贴上去可太多了,主要找一些能够改写使用到的方法即可。

该类继承Token,而Statement就是继承的此类,也就是Statement最终继承的此两者全部方法。

query = 'CREATE TABLE AS Select a, col_2 as b from Table_A;select * from foo'
stmt=sqlparse.parse(query)
stmt_1=stmt[0].tokens
#for each_token in stmt_1:
    #print(each_token)
sqlparse.sql.TokenList(stmt_1)._get_repr_name()
stmt[0]._get_repr_name()

1. _get_repr_name()方法

将输出自身数据结构:

def _get_repr_name(self):
    return type(self).__name__

2._pprint_tree()方法

这里有关树的解析在这个打印_pprint_tree函数上面:

def _pprint_tree(self, max_depth=None, depth=0, f=None, _pre=''):
        """Pretty-print the object tree."""
        token_count = len(self.tokens)
        for idx, token in enumerate(self.tokens):
            cls = token._get_repr_name()
            value = token._get_repr_value()

            last = idx == (token_count - 1)
            pre = '`- ' if last else '|- '

            q = '"' if value.startswith("'") and value.endswith("'") else "'"
            print("{_pre}{pre}{idx} {cls} {q}{value}{q}"
                  .format(**locals()), file=f)

            if token.is_group and (max_depth is None or depth < max_depth):
                parent_pre = '   ' if last else '|  '
                token._pprint_tree(max_depth, depth + 1, f, _pre + parent_pre)

第一次看到这个函数我就认为使用sqlparse解析SQL血缘是可以做成功的:

从打印的函数循迹看是否能够得到血缘关系。这点是可以做到的,先遍历最底层的结构,再依次输出,此时这里我已经有了一个明确的实现思路,但是这里先不开展,我们还是先将此类看明白再下定论。先通读这个方法:

和我之前写的树递归函数差不多,这里要注意到一点就是空格会影响树的输出,所以传入sql之前还是得做去除空格的操作,最好还是化成一句没有空格和缩进的语句。当然也可以通过改写去除Whitespace这一标识符。

通过解析树的输出我们发现到IdentifierList 此类就开始往下层调了,这取决于这段代码:

 if token.is_group and (max_depth is None or depth < max_depth):
                parent_pre = '   ' if last else '|  '
                token._pprint_tree(max_depth, depth + 1, f, _pre + parent_pre)

也就是说is_group为True就会开始下一层的遍历,而token的初始is_group则为False,也就是解析为TokenList的时候才为True。此Tokenlist就很明显是与IdentifierList 这个类有关了。下个小节我们再细细研究IdentifierList 基类,先让我们再看看TokenList的其他功能函数。

3.get_token_at_offset(self, offset)

该方法将返回一个位置偏移上的token。

offsert_token=stmt[0].get_token_at_offset(1)
offsert_token

4.flatten(self)

和token的方法几乎差不多,但是生产的没有分类的tokens。对所有子tokens递归时调用此方法。

5._token_matching(self, funcs, start=0, end=None, reverse=False)

该函数就是将token与funcs功能函数进行匹配,内部调用。

6.token_first(self, skip_ws=True, skip_cm=False)

这个是一个比较重要的方法,返回第一个子token。也就是可以返回这条sql的功能类型。

stmt[0].token_first()

其他方法很多都是主类方法的工具函数,主要是现在抓到了重点先搞清楚。Identifier这个类

三、Identifier类

这个类继承了两个父类NameAliasMixin和TokenList,前者为主要为实现get_real_name和get_alias的方法,后者也是我们摸清楚了的TokenList方法。

Identifier类主要代表标识符。标识符可能有别名或类型转换。其中有四个主要方法:

1.get_array_indices()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值