目录
4.0 引言
第3章建立了周期信号作为复指数信号线性组合的表示,同时我们也看到了这一表示是如何用来描述线性时不变系统对这些信号的作用效果的。
这一章和下一章将把这些概念推广应用到非周期信号中。
读者将会看到,相当广泛的一类信号,其中包括全部有限能量的信号——也能够经由复指数信号的线性组合来表示。
对周期信号而言,这些复指数基本信号构造单元全是成谐波关系的;
对非周期信号,它们则是在频率上无限小地靠近的。
因此,作为线性组合表示所取的形式是一个积分,而不是求和。
在这种表示中所得到的系数谱称为傅里叶变换;
而利用这些系数将信号表示为复指数信号线性组合的综合积分式本身则称为傅里叶逆变换。
对连续时间非周期信号建立这种表示是傅里叶的最重要的贡献之一,现在我们来讨论傅里叶变换也是紧随着他最初研究所采用的途径进行的;特别是傅里叶所曾认为的,一个非周期信号能够看成周期无限长的周期信号这一点。更确切地说,在一个周期信号的傅里叶级数表示中,当周期增加时,基波频率就减小,成谐波关系的各分量在频率上愈趋靠近。当周期变成无穷大时,这些频率分量就形成了一个连续域,从而傅里叶级数的求和也就变成了一个积分。
4.1 非周期信号的表示:连续时间傅里叶变换
4.1.1 非周期信号傅里叶变换表示的导出
为了对傅里叶变换表示的实质求得更深入的了解,我们还是先由在例3.5中研究过的连续时间周期方波的傅里叶级数表示入手。即,在一个周期内
以周期T周期重复,如图4.1所示。
在例3.5 中曾求出,该方波信号的傅里叶级数系数ak是
其中 ω0 =2π/T。在图3.7中,已展示出对某个固定的T值和几个不同的T值,这些系数的条状图。
理解式(4.1)的另一种方式是把它当成一个包络函数的样本,即
也就是说,若将ω看成一个连续变量,则函数(2sinωT1)/ω就代表Tak的包络,这些系数就是在此包络上等间隔取得的样本。而且,若T固定,则Tak的包络就与T无关。在图4.2中,再次表明了该周期方波的傅里叶级数系数,但这次是按式(4.2)作为Tak包络的样本给出的。从该图可以看到,随着T增加(或等效地,基波频率ω=2π/T减小),该包络就被以愈来愈密集的间隔采样。随着T变成任意大,原来的周期方波就趋近于一个矩形脉冲(也就是说,在时域保留的是一个非周期信号,它对应于原方波的一个周期)。与此同时,傅里叶级数系数(乘以T后)作为包络上的样本也变得愈来愈密集,这样从某种意义上说(稍后将说明),随着T→∞,傅里叶级数系数就趋近于这个包络函数。
这个例子说明了对非周期信号建立傅里叶表示的基本思想。具体而言,在建立非周期信号的傅里叶变换时,可以把非周期信号当成一个周期信号在周期任意大时的极限来看待,并且研究这个周期信号傅里叶级数表示式的极限特性。
现在考虑一个信号x(t),它具有有限持续期,即对某个T1,当|t|>T1时,x(t )=0,如图4.3( a)所示。从这个非周期信号出发,可以构成一个周期信号~x(t),使x(t)就是~x(t)的一个周期,如图4.3(b)所示。当把T选得比较大时,~x(t)就在一个更长的时段上与x(t)相一致,并且随着T→∞,对任意有限时间t值而言,~x(t)就等于x(t)。
现在来考察在这种情况下~x(t)的傅里叶级数表示式的变化。这里,为方便起见,将式(3.38)和式(3.39)重写如下,并将式(3.39)的积分区间取为-T/2≤t≤T/2,就有
其中ω0 =2π/T。由于在|t|<T/2时~x(t)=x(t),而在其他情况下x(t) =0,所以式(4.4)可以重新写成
因此,定义Tak的包络X(jω)为
这时,系数ak可以写为
将式(4.6)和式(4.3)结合在一起,~x(t)就可以用X(jω)表示为
或者,因为2π/T=ω0,~x(t)又可表示为
随着T→∞,~x(t)趋近于x(t),结果式(4.7)的极限就变成x(t)的表示式。再者,当T→∞时,有ω0→0,式(4.7)的右边就过渡为一个积分。这一点可以利用图4.4给予说明。
在式(4.7)右边和式中的每,一项都是高度为X( jkω0) e^jkω0t(这里t被认为是固定的),宽度为ω0的一个矩形的面积。当ω0→0时,求和收敛于X(jω)e^jωt的积分,因此利用T→+∞时,~x(t)→x(t)这一事实,可见式(4.7)和式(4.5)就分别变成
式(4.8)和式(4.9)称为傅里叶变换对(Fourier transform pair)。函数X(jω)称为x(t)的傅里叶变换或傅里叶积分( Fourier integral),而式(4.8)称为傅里叶逆变换( inverse Fourier trans-form)
综合公式(4.8)对非周期信号所起的作用与式(3.38)对周期信号所起的作用相同,因为两者都相当于把一个信号表示为一组复指数信号的线性组合。对周期信号来说,这些复指数信号的幅度为{ak},由式(3.39)给出,并且在成谐波关系的一组离散点kω0, k =0,±1,±2,…上出现。对非周期信号而言,这些复指数信号出现在连续频率上,并且根据综合公式(4.8),其“幅度”为X(jω)( dω/2π)。与周期信号傅里叶级数系数所用的术语类似,一个非周期信号x(t)的变换X(jω)通常称为x(t)的频谱,因为X(jω)告诉我们将x(t)表示为不同频率正弦信号的线性组合(就是积分)所需要的信息。
基于以上讨论,或者等效地基于式(4.9)和式(3.39)的比较,也可以注意到,一个周期信号~x(t)的傅里叶系数ak能够利用~x(t)的一个周期内信号的傅里叶变换的等间隔样本来表示。具体而言,设~x(t)是一个周期为T的周期信号,其傅里叶系数为ak;令x(t)是一个有限持续期信号,它等于在一个周期(比如s≤t≤s +T,s为某一个任意值)内等于~x(t),而在该周期外全为零。那么,因为式(3.39)求~x(t)的傅里叶系数时可以在任何周期内求积分,因此
由于x(t)在s≤t≤s +T以外为零,所以又可写成
将上式与式(4.9)比较后可得
这里,X(jω)就是x(t)的傅里叶变换。式(4.10)表明~x(t)的傅里叶系数正比于一个周期内的~x(t)信号傅里叶变换的样本。这一点在实际中常常是有用的,将在习题4.37中进一步阐明。
4.1.2 傅里叶变换的收敛
虽然在导出式(4.8)和式(4.9)的傅里叶变换对时,假设x(t)是任意的,但具有有限持续期。事实上这一对变换关系对于相当广泛的一类无限持续期的信号仍然成立。我们对傅里叶变换所采用的推导过程,本身似乎就暗示了x(t)的傅里叶变换是否存在的条件应该和傅里叶级数收敛所要求的那一组条件一样。事实证明确实如此!现在考虑按照式(4.9)求出的X(jω),令~x(t)表示将X(jω)代入式(4.8)中所得到的信号,即
要想知道的是,什么时候式(4.8)成立[也就是说,什么时候~x(t)才是原来信号x(t)的真正表示?]。如果x(t)能量有限,也即x(t)平方可积,因而
那么就可以保证X(jω)是有限的,即式(4.9)收敛。现用e(t)表示∧x(t)和x(t)之间的误差,即e(t) =∧x(t) -x(t),那么
式(4.11)和式(4.12)与周期信号的式(3.51)和式(3.54)是相对应的。因此,与周期信号相类似,如果x(t)能量有限,那么虽然x(t)和它的傅里叶表示∧x(t)在个别点上或许有明显的不同,但是在能量上没有任何差别。
也与周期信号一样,有另一组条件,这组条件充分保证了∧x(t)除了那些不连续点外,在任何其他的t上都等于x(t),而在不连续点处∧x(t)等于x(t)在不连续点两边值的平均值。这组条件也称为狄里赫利条件,它们是:
尽管这两组条件都给出了一个信号存在傅里叶变换的充分条件,但是下一节将会看到,倘若在变换过程中可以使用冲激函数,那么,在一个无限区间内,既不绝对可积,又不具备平方可积的周期信号也可以认为具有傅里叶变换。这样,就有可能把傅里叶级数和傅里叶变换纳入一个统一的框架内。在以后的各章讨论中将会发现这样做是非常方便的。在下一节进一步讨论这一问题之前,先举几个有关傅里叶变换的例子。
4.1.3 连续时间傅里叶变换举例
……
4.2 周期信号的傅里叶变换
上一节介绍了傅里叶变换表示,并给出了几个例子。那一节重点关注非周期信号,但其实对于周期信号也能够建立傅里叶变换表示。这样就可以在统一框架内考虑周期和非周期信号。事实上将会看到,可以直接由周期信号的傅里叶级数表示构造出一个周期信号的傅里叶变换;所得到的变换在频域由一串冲激所组成,各冲激的面积正比于傅里叶级数系数。这是一个非常有用的表示。
为了得到一般性的结果,考虑一个信号x(t),其傅里叶变换X(jω)是一个面积为2π,出现在ω=ω0处的单独冲激,即
为了求出与X(jω)相应的x(t),可以应用式(4.8)的逆变换公式得到
将上面结果再加以推广,如果X(jω)是在频率上等间隔的一组冲激函数的线性组合,即
那么利用式(4.8),可得
可以看出,式(4.23)就是如式(3.38)所给出的一个周期信号的傅里叶级数( series)表示。因此,一个傅里叶级数系数为{ak}的周期信号的傅里叶变换,可以看成出现在成谐波关系的频率上的一串冲激函数,发生于第k次谐波频率kω0上的冲激函数的面积是第k个傅里叶级数系数ak的2π倍。
4.3 连续时间傅里叶变换性质
这一节以及后面两节将讨论傅里叶变换的几个重要性质。4.6节的表4.1详细地列出了这些性质。与周期信号的傅里叶级数表示的情况相同,通过这些性质能够透彻地认识变换本身以及一个信号的时域描述和频域描述之间的关系。另外,很多性质对简化傅里叶变换或逆变换的求取往往很有用。再者,正如上一节所指出的,由于一个周期信号的傅里叶级数和傅里叶变换表示之间存在着密切的关系,利用这一关系就能够把傅里叶变换的性质直接转移到对应的傅里叶级数性质中,而傅里叶级数性质已在第3章中单独讨论过(见3.5节和表3.1)。
为了方便起见,在本节的整个讨论中,步骤使用时间函数及其傅里叶变换,并用一些简便的符号来代表信号与其变换之间的成对关系。4.1节已经给出,一个信号x(t)及其傅里叶变换X( jω)由如下傅里叶变换的综合和分析公式
联系起来的。有时为了方便,将X(jω)用于表示,将x(t)用
表示;也将x(t)和X(jω)这一对傅里叶变换用下列符号表示:
例如,以例4.1为例就有
4.3.1 线性性质
4.3.2 时移性质
4.3.3 共轭与共轭对称性
共辄性质是指,若
则
将式(4.25)取共辄就可得出这一性质,即
式(4.29)的右边就是x*(t)的傅里叶变换的分析公式,于是就得到式(4.28)所示的关
共辄性质就能证明,若x(t)为实函数,那么X(jω)就具有共轭对称性,即
具体而言,若x(t)为实数,就有x*(t) = x(t),由式(4.29)
用-ω替换ω就可得出式(4.30)。
由例4.1,x(t) = e^-at·u(t),于是
作为式(4.30)的一个结果,若将X(jω)用笛卡儿坐标表示为
那么若x(t)为实函数,则有
也就是说,傅里叶变换的实部是频率的偶函数,而虚部则是频率的奇函数。
类似地,若将X(jω)用极坐标表示为
那么,根据式(4.30)就可得出:|X(jω)|是频率ω的偶函数,是频率ω的奇函数。因此,当欲计算或图示一个实值信号的傅里叶变换,该变换的实部和虚部,或者模与相位时,只需给出正频率时的值就可以了;因为对负频率时的值,可以利用上面导出的关系,直接从ω>0时的值得出。
作为式(4.30)进一步的结果,若x(t)为实偶函数,那么X(jω)也一定为实偶函数。为此,可以写出
因此,X(jω)是偶函数。再与式(4.30)相结合,这也就要求X*(jω) =X(jω),即X(jω)为实函数。在例4.2中的实偶信号e^-a|t|就表明了这个性质。同样可以证明。若x(t)是时间的实奇函数,而有x(t) = -x( - t),那么X(jω)就是纯虚奇函数。
最后,在第1章曾讨论过,一个实函数x(t)总是可以用一个偶函数xe(t)= Ev{x(t)}和一个奇函数xo(t) = Od{x(t)}之和来表示,即
根据傅里叶变换的线性性质,有
并且,根据上面的讨论,是一个实函数,
是一个纯虚数,于是可以得出,若x(t)为实函数则有
下面这个例子用来说明这些对称性质的一种应用。
4.3.4 微分与积分
令x(t)的傅里叶变换是X(jω),将傅里叶变换综合公式(4.24)两边对t进行微分,可得
因此有
这是一个特别重要的性质,因为它将时域内的微分用频域内乘以jω所代替。4.7节讨论利用傅里叶变换来分析由微分方程描述的线性时不变系统时,这一性质极其有用。
因为时域内的微分对应于频域内乘以jω,这就使人或许可能得出,时域内的积分是否应该对应于频域内除以jω,的确是这样,但这只是事情的一部分,真正的关系应该是
式( 4.32)右边的冲激函数项反映了由积分所产生的直流或平均值。
下面用两个例子来说明式(4.31)和式(4.32)的应用。
4.3.5 时间与频率的尺度变换
其中a是一个实常数。这个性质可以直接由傅里叶变换的定义得到,即
这就相应于式(4.34)。因此,除了一个1/|a|的幅度因子外,信号在时间上有一个线性尺度因子a的变换,相应于它在频率上有一个线性因子1/a的变换,反之亦然。若令a= -1,则由式(4.34)就有
也就是说,在时间上反转一个信号,它的傅里叶变换也反转。
这一性质的通俗说明:磁带放音速度加速(信号在时间上压缩),频谱就会扩展,听起来频率变高。
尺度变换性质又一次说明了时间和频率之间的相反关系。关于这一点,我们已经遇到好几次了。例如,增加正弦信号的周期,其频率就下降,再如曾在例4.5(见图4.11)中所看到的,若考虑如下变换:
那么,随着W的增加,X(jω)的逆变换就愈来愈窄,幅度愈来愈高,最终当W→∞时,其逆变换就趋近于一个冲激函数。最后,在例4.8中也看到,一个周期冲激串的傅里叶变换也是一个冲激串,其在频域中的频率间隔是反比于时域中冲激串的时间间隔的。
时域与频域之间的相反关系在信号与系统的各个方面都十分重要,其中包括滤波和滤波器设计,并且在本书后续许多地方还会看到它的重要性。另外,读者或许在科学和工程领域的各个方面已经熟悉了这一性质的含义,例如物理学中的不确定性原理就是其中一例,另一个例子将在习题4.49中讨论。
4.3.6 对偶性
比较一下正变换和逆变换的关系式(4.24)和式(4.25),可以看到,这两个式子在形式上是很相似的,但不完全一样。这一对称性就导致了傅里叶变换的一个性质,称为对偶性。
通过例4.4和例4.5中这一双傅里叶变换对之间存在的关系,在例4.5之后讲解了对偶性。在前面的例子中导出了如下一对傅里叶变换:
而在后面的例子,又考虑了下面的变换对:
这两个变换对及其之间的关系绘于图4.17中。
由这两个例子所呈现出的对称性可以推广到一般的傅里叶变换中。具体而言,由于式(4.24)和式(4.25)之间的对称性,对于任何变换对来说,在时间和频率变量互换之后都有一种对偶的关系。对于这一点最好还是用例子来说明。
……
对偶性也能用来确定或联想到傅里叶变换的其他性质。具体而言,如果一个时间函数有某些特性,而这些特性在其傅里叶变换中隐含着一些别的什么东西,那么与频率函数有关的同一特性也会在时域中隐含着对偶的东西。例如,在4.3.4节中曾见到,时域中的微分对应于在频域内乘以jω,于是由前面的讨论,可以想到在时域中乘以jt,大概也会对应于频域的微分。为了确定这一对偶性质的确切形式,完全可以像在4.3.4节中所做的,将式(4.25)两边对ω微分,得到
即
同样,对于式(4.27)和式(4.32)可导出它们的对偶性质为
和
4.3.7 帕斯瓦尔定理
若x(t)和X(jω)是一对傅里叶变换,则
该式称为帕斯瓦尔定理。该式直接用傅里叶变换就能得出,即
式(4.43)的左边是信号x(t)的总能量。帕斯瓦尔定理指出,这个总能量既可以按每单位时间内的能量(|x(t)|^2)在整个时间内积分计算出来,也可以按每单位频率内的能量([|X(jω)|^2]/2π)在整个频率范围内积分而得到。因此,|X(jω)|^2常称为信号x(t)的能谱密度(energy-density spectrum)(见习题4.45)。应该注意,对于有限能量信号的帕斯瓦尔定理与周期信号的帕斯瓦尔定理式(3.67)是直接对应的,表明-个周期信号的平均功率等于它的各次谐波分量的平均功率之和,而这些谐波分量的平均功率就等于傅里叶级数系数的模平方。
帕斯瓦尔定理和其他傅里叶变换性质在直接从傅里叶变换来确定一个信号的某些时域特性时是很有用处的。下面的例子就是一个简单的说明。
……
除了以上讨论到的这些性质外,傅里叶变换还有一些其他的性质。下面两节将特别讨论另外两个性质,这两个性质在线性时不变系统研究及其应用中起着特别重要的作用。其中的第一个性质(在4.4节讨论)称为卷积性质( convolution property),它是很多信号与系统应用中的核心,其中包括滤波。第二个性质称为相乘性质( multiplication property),将在4.5节讨论。相乘性质是第7章讨论采样和第8章讨论幅度调制的基础。4.6节将综合讨论傅里叶变换的性质
4.4 卷积性质
在第3章已经知道,如果一个周期信号用一个傅里叶级数来表示,也就是按式(3.38)作为成谐波关系的复指数信号的线性组合来表示,那么一个线性时不变系统对这个输入的响应也能够用一个傅里叶级数来表示。因为复指数信号是线性时不变系统的特征函数,所以输出的傅里叶级数系数是输入的那些系数乘以对应谐波频率上的系统频率响应的值。
这一节将把这一结论推广到非周期信号的情况。首先以第3章对周期信号所建立的直观认识为基础,通过稍微欠正规的方式来导出这一性质。然后直接由卷积积分出发,以简短但是正规的方式来导出这一性质。
回想一下,我们是把作为x(t)的一种表示式的傅里叶变换综合公式当成复指数信号的一种线性组合来理解的。重新回到式(4.7),x(t)是作为一个和的极限来表示的,即
3.2节和3.8节都讨论过,单位冲激响应为h(t)的线性系统对复指数信号e^jkω0t的响应是
H(jkω0)e^jkω0t,其中
按照式(3.121)的定义,可以把频率响应H(jω)当成该系统单位冲激响应的傅里叶变换。换句话说,单位冲激响应的傅里叶变换(在ω = kω0上求值)就是线性时不变系统对于特征函数e^jkω0t的复标尺因子。由叠加原理[见式(3.124)],就有
因此,根据式(4.47),该线性系统对x(t)的响应就为
因为y(t)和它的傅里叶变换是由下式联系在一起的:
所以,根据式(4.49),就可以将Y(jω)认为是
作为比较正规的推导,可考虑如下卷积积分:
要求的Y(jω)是
交换积分次序,并注意到x(τ)与t无关,则有
根据时移性质式(4.27),上式方括号内就是e^-jωτH(jω),将其代入式(4.54)得
上式右边的积分部分就是X(jω),所以
式(4.56)在信号与系统分析中十分重要。正如该式所表达的,它将两个信号的卷积映射为其傅里叶变换的乘积。
单位冲激响应的傅里叶变换H(jω)是按式(3.121)所定义的频率响应,它控制着在每一频率ω输入傅里叶变换复振幅的变化。
例如,在频率选择性滤波中,可以要求在某一频率范围内H(jω)≈1,以便让通带内的各频率分量几乎不受任何由于系统带来的衰减或变化;而在另一些频率范围内,可能要求H(jω)≈0,以便将该范围内的各频率分量消除或显著衰减掉。
在线性时不变系统分析中,频率响应H(jω)所起的作用与其逆变换——单位冲激响应h(t)所起的作用是同样的。一方面,因为h(t)完全表征了一个线性时不变系统,因此H(jω)也一定是这样;另外,线性时不变系统的很多性质也能够很方便地借助于H(jω)来反映。例如,在2.3节已经知道两个线性时不变系统级联后的冲激响应就是这些系统冲激响应的卷积,而且总的特性与级联次序无关。利用式(4.56)就可以用频率响应来描述这种系统的级联特性。正如图4.19所表明的,由于两个线性时不变系统级联后的单位冲激响应是每个冲激响应的卷积,应用卷积性质即可得出,两个线性时不变系统级联后的总频率响应就是这些单个频率响应的乘积,而且由此可明显看出,总的频率响应与级联次序无关。
正如在4.1.2节曾讨论过的,傅里叶变换的收敛是在几个条件之下才得以保证的,这样就不是对所有的线性时不变系统都能定义出频率响应。然而,如果一个线性时不变系统是稳定的,那么正如2.3.7节和习题2.49中所介绍的,该系统的单位冲激响应就一定是绝对可积的,也就是
式(4.57)是三个狄里赫利条件之一,而这三个条件合在一起才保证h(t)的傅里叶变换H(jω)存在。因此,假设h(t)也满足另外两个条件(因为所有物理上或实际上有意义的信号都是这样的),那么一个稳定的线性时不变系统就有一个频率响应H(jω)。
在利用傅里叶分析来研究线性时不变系统时,将只局限于系统的冲激响应有傅里叶变换的情况。为了应用变换法来研究不稳定的线性时不变系统,就要建立一种更为一般化的连续时间傅里叶变换,这就是拉普拉斯变换,我们将其推迟到第9章讨论。在这之前都只讨论能够利用傅里叶变换来分析的很多问题和实际应用。
4.4.1 举例
……
4.5 相乘性质
卷积性质说的是时域内的卷积对应于频域内的相乘。由于时域和频域之间的对偶性,可以期望对此也一定有一个相应的对偶性质存在,即时域内的相乘应该对应于频域内的卷积。具体而言,就是
式(4.70)可以利用4.3.6节的对偶关系与卷积性质一起来证明,或者直接利用傅里叶变换关系,像推导卷积性质一样的步骤来得到。
一个信号被另一个信号去乘,可以理解为用一个信号去调制另一个信号的振幅,因此两个信号相乘往往也称为幅度调制。为此,式(4.70)有时也称为调制性质( modulation property)。在第7章和第8章中将会看到,这个性质有几个很重要的应用。为了说明式(4.70)及今后将要讨论到的若干应用,先来举几个例子。
……
4.5.1 具有可变中心频率的频率选择性滤波
正如在例4.21和例4.22中所想到的,并将更全面地在第8章将讨论的,相乘性质的一个重要应用是在通信系统中的幅度调制。另一个重要应用是在中心频率可调的频率选择性带通滤波器的实现上,其中心频率可以很简单地用一个调谐旋钮来调节。在由电阻器、运算放大器和电容器构成的频率选择性带通滤波器中,其中心频率决定于许多元件值,若要直接调节中心频率,全部元件都必须同时以一种正确的方式变化。这一点一般说来是十分困难的,而且与仅制作一个固定特性的滤波器相比很麻烦。另一种办法是利用一个固定特性的频率选择性滤波器,然后用恰当地移动信号频谱的办法来改变滤波器的中心频率,其中就要用到正弦幅度调制的原理。
例如,考虑示于图4.26的系统。这里,输入信号x(t)被一个复指数信号e^jωct相乘,所得信号然后通过一个截止频率为ωc的低通滤波器,其输出再乘以e^-jωct,信号x(t), y(t),e (t)和ω(t)的频谱如图4.27所示。无论从相乘性质或频移性质来看,y(t) = e^jωctx(t)的傅里叶变换都是
这样Y(jω)就等于X(jω)向右移ωc在X(jω)中靠近ω =ωc附近的频谱就移进该低通滤波器的通带内。同样,ft) = e^-jωct·ω(t)的傅里叶变换是
F(jω)就是W(jω)向左移ωc。由图4.27可见,图4.26整个系统等效于一个中心频率为-ωc,带宽为2ω0的理想带通滤波器,如图4.28所示。随着复指数振荡器的频率ωc的改变,该带通滤波器的中心频率也就改变了。
在图4.26的系统中,x(t)为实信号,而y(t) , ω(t)和ft)则全都是复信号。如果仅保留f(t)中的实部,那么得到的频谱就如图4.29所示,而与其相应的等效带通滤器就应有分别以ωc和-ωc为中心的两个频带,如图4.30所示。在一定的条件下,利用正弦调制而不用复指数调制来实现图4.30的系统也是可能的。这将在习题4.46中进一步说明。
4.6 傅里叶变换性质和基本傅里叶变换对列表
在前面几节和本章末的习题中已经研究过傅里叶变换的若干重要性质,现将这些综合出来列于表4.1中。表中还给出了每个性质所在的节号。
表4.2汇总了一些重要的基本傅里叶变换对,这些变换对在用傅里叶分析这一工具研究信号与系统时是会反复遇到的。所列变换对除了最后一个外,都在前面各节作为例子讨论过。最后一个变换对将在习题4.40中考虑。另外,要注意在表4.2中有几个信号是周期的,这时还列出了相应的傅里叶级数系数。
4.7 由线性常系数微分方程表征的系统
在几种场合都曾经讨论过,一类特别重要而有用的连续时间线性时不变系统是其输入输出满足如下形式的线性常系数微分方程的系统:
这一节将要讨论如何确定这样一个线性时不变系统的频率响应问题。全部讨论中都假定系统是稳定的,所以它的频率响应存在,即式(3.121)收敛。
有两种密切联系的途径可以确定由式(4.72)的微分方程所描述的线性时不变系统的频率响应H(jω)。其中第一个是依赖于复指数信号是线性时不变系统的特征函数这一事实,这个事实曾在3.10节分析几个简单的非理想滤波器时使用过。具体而言,若x(t) = e^jωt,那么输出就一定是y(t) =H(jω)e^jωt,将这些代入式(4.72)的微分方程,并进行一些代数运算,就能解出H(jω)。这一节将用另一种方法来达到同样的结果,这就是应用傅里叶变换的微分性质式(4.31)。
现考虑一个由式(4.72)表征的线性时不变系统。根据卷积性质,
其中X(jω) , Y(jω)和H(jω)分别是输人x(t),输出y(t)和系统单位冲激响应h(t)的傅里叶变换。现在,对式(4.72)两边取傅里叶变换,得
根据式(4.26)的线性性质,上式变为
并且由微分性质式(4.31 ),可得
可以看出,H(jω)是一个有理函数,也就是两个(jω)的多项式之比。其分子多项式的系数与式(4.72)右边的系数相同,分母多项式的系数就是式(4.72)左边的系数。因此,由式(4.72)表征的线性时不变系统的频率响应式(4.76)可根据该式的系数直接写出来。
式(4.72)的微分方程一般统称为N阶微分方程,因为方程中涉及到直至输出y(t)的第N阶导数。同时,式(4.76)中 H(jω)的分母也是一个( jω )的N阶多项式。
4.8 小结
这一章建立了连续时间信号的傅里叶变换表示,并研究了许多很有用的性质。特别是在把一个非周期信号看成周期变得任意大时一个周期信号的极限之后,由第3章所建立的周期信号的傅里叶级数表示导出了非周期信号的傅里叶变换表示。另外,周期信号本身也可以用傅里叶变换来表示,这个傅里叶变换由发生在该周期信号各谐波频率上的冲激串所组成,并且每个冲激串的面积正比于各傅里叶级数系数。
傅里叶变换具有一系列重要性质,这些性质表达了不同的信号特性是如何反映到它们的变换中去的,并且在这一章推导开研究了其中的计多性质。有两个性质在研究信号与系统时具有特别重要的意义。第一个就是卷积性质。这个性质是复指数信号的特征函数性质的一个直接结果,并由此导致可以用系统的频率响应来表征一个线性时不变系统。这种表示是用频域的方法来分析线性时不变系统的基础,在后续各章中将继续给予讨论。具有极其重要内涵的傅里叶变换的第二个性质是相乘性质,它是频域分析方法研究采样和调制系统的基础。这些系统将在第7章和第8章中讨论。
本章还可看出,傅里叶分析方法特别适合于研究由线性常系数微分方程描述的线性时不变系统。具体而言,这种系统的频率响应能直接根据微分方程的系数来确定,并利用部分分式展开法,极易求出系统的单位冲激响应。在下面的各章中将会发现,这些系统频率响应的代数结构对于深人分析它们的时域和频域特性极为方便。