目录
1.0 引言
本章从引人信号与系统的数学描述及其表示入手来建立一种分析体系。
紧随其后的几章,凭借这个基础来建立和描述另一些概念与方法,而这些又会大大加强对信号与系统问题的理解,以及在分析和解决涉及多个方面的信号与系统问题的能力。
1.1 连续时间信号、离散时间信号
1.1.1 举例 & 数学表示
信号:描述范围极其广泛的一类物理现象的数学工具。
信号的表示方式:有许多方式,但信号所包含的信息总是寄寓在某种变化形式的波形之中。
在数学上,信号可以表示为一个或多个变量的函数。本书讨论范围仅限于单一变量的函数,而且为了方便起见,以后在讨论中一般总是用时间来表示自变量。(信号的时间单变量函数)
连续时间信号、离散时间信号:全书讨论的两种基本类型的信号。
连续时间信号:自变量是连续可变的,因此信号在自变量的连续值上都有定义;
离散时间信号:仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。
而用
。
连续时间信号:t 表示连续时间自变量,用圆括号( )把自变量括在里面。
离散时间信号:n 表示离散时间自变量,用方括号[ ]把自变量括在里面。
连续时间信号x(t),和离散时间信号x[n],的例子如下:
离散时间序列:离散时间信号x[n]仅仅在自变最的整数值上有定义,把x[n]用图来表示就是为了强调这一点,有时为了更加强调这一点,就干脆称x[n]为离散时间序列。
离散时间信号x[n]的产生:
① 表示一个自变量变化本来就是离散的物理现象。
② 通过对连续时间信号的采样而得到。这时该离散时间信号x[n]则代表一个自变量连续变化的连续时间信号在相继的离散时刻点上的样本值。
1.1.2 信号能量 & 信号功率(第一个重点)
在很多应用中,所考虑的信号是直接与在某一物理系统中具有功率和能量的一些物理量有关的。
--------------------------------------------------------------------------------------------------------------------------------
【例】
若v(t)和i(t)分别是阻值为R的某一电阻上的电压和电流,那么其瞬时功率就是:
在时间间隔 t1 ≤ t ≤ t2内的总能量(功率表达式对时间积分):
在时间间隔 t1 ≤ t ≤ t2内的平均功率(总能量 / 总时间):
---------------------------------------------------------------------------------------------------------------------------------
① 有限时间区间·连续时间信号总能量
信号表达式的平方对时间积分
|x|记为x(可能为复数)的模
② 有限时间区间·连续时间信号平均功率
总能量 ÷ 总时间
③ 有限时间区间·离散时间信号总能量
连续积分 ——> 离散求和
④ 有限时间区间·离散时间信号平均功率
总能量 ÷ 区间内总点数
要注意的是,这里所用的“信号的功率”和“信号的能量”与是否真正关联了物理量无关。尽管如此,我们仍发现采用这些术语在一般意义上很方便——很形象地表达的信号的某些特性。
⑤ 无穷时间区间·连续时间信号总能量
⑥ 无穷时间区间·离散时间信号总能量
注意,对于某些信号,式(1.6)的积分或式(1.7)的求和可能不收敛——这样的信号具有无限的能量,而E∞<∞的信号具有有限的能量。
⑦ 无穷时间区间·连续时间信号平均功率
⑧ 无穷时间区间·离散时间信号平均功率
利用这些定义就可以划分出三类信号:
① 能量信号_能量有限:E∞ < ∞,P∞ = 0。(例:单个正弦波脉冲)
② 功率信号_功率有限:E∞ = ∞,P∞ = P0。(例:正弦波)
③ 非能量信号非功率信号_能量无限、功率无限:E∞ = ∞,P∞ = ∞。(例:指数增长信号)
1.2 自变量的变换
信号与系统分析中一个重要的概念是关于信号的变换概念。
这一节只关注很有限的但很重要的几种最基本的信号变换,这些变换只涉及自变量的简单变换,也就是时间轴的变换。
这些基本变换可以引入信号与系统的几个基本性质。
在以后的各章中将会发现它们在定义和表征更为丰富和更加重要的一类系统中也起着重要的作用。
1.2.1 自变量变换举例
① 时移
x(t)的延迟:在t1时刻取t0的值——x(t-1)。图像右移
x(t)的超前:在t0时刻取t1的值——x(t+1)。图像左移
② 时间反转
x(t)以t=0为轴翻转:x(-t)——倒放磁带
③ 时间尺度变换
x(t)的自变量的线性尺度变换:x(2t)——2倍速放磁带
亦称图像伸缩变换,2t表示图像压缩,t/2表示图像伸展。
我们常常关注的是对某一个已知的信号x(t),通过自变量变换以求得一个形式如x(αt+β)的信号,其中α和β都是给定的数。这样一种自变量变换所得到的信号除了有一个线性的扩展(若|al < 1) 或 压缩(若la|>1),时间上的反转(若α<0)及移位(若β≠0)外,仍旧保持x(t)的形状。
说明x(t)——>x(αt+β)的变换途径:
途径①:首先根据β的值将x(t)延时或超前,然后再根据α的值来对这个已经延时或超前的信号进行时间尺度变换和/或时间反转。如果lal<1,就将该已被运时或超前的信号进行线性扩展;如果lal>1,就进行线性压缩,而若a<0就再进行时间反转。
途径②:先αt扩展,再移位β/α
【例】
x(t) ——> x(-t+1)
途径①:左移1位,再翻转。
途径②:翻转,在右移1位。
1.2.2 周期信号
① 周期连续时间信号:x(t) = x(t+mT0),基波周期为T0,m为任意整数。
注意,当x(t)为一个常数(对任意周期T,x(t)都是周期的)基波周期无定义。
非周期信号:不是周期信号的信号。
② 周期离散时间信号:x[n] = x[n+N],基波周期N
题型:证明信号为周期/非周期信号——找到一个T满足上式。
1.2.3 偶信号 & 奇信号
① 偶信号
连续时间·偶信号:x(t) = x(-t)。
离散时间·偶信号:x[n] = x[-n]
② 奇信号
连续时间·奇信号:x(t) = -x(-t),且 x(0) = 0。
离散时间·奇信号:x[n] = -x[-n],且 x[0] = 0。
③ 任何信号都能够分解成一个奇信号和一个偶信号之和
x(t)的偶部:
x(t)的奇部:
离散时间情况下同上。
1.3 指数信号、正弦信号
这一节和下一节要介绍几个基本的连续时间和离散时间信号。
这样做不仅仅是因为这些信号经常出现,更重要的是它们可以作为基本的信号构造单元来构成其他许多信号。
1.3.1 连续时间·复指数信号 & 连续时间·正弦信号
特殊(C=1):实指数信号、纯虚指数信号(周期复指数信号)
一般:一般复指数信号
连续时间复指数信号具有如下形式:
其中C、a一般为复数。
(1) 实指数信号
若C和a都是实数,这时的x(t)称为实指数信号,具有两种类型的特性。
① 若a是正实数,那么x(t)随t的增加而呈指数增长。
② 若a是负实数,则x(t)随t的增加而呈指数衰减。
③ 当a =0时,x(t)就为一个常数。
(2) 周期复指数信号 & 正弦信号
当a限制为纯虚数,特别是考虑如下信号:
C=1,A=jω0(纯虚数)
该信号的一个重要性质是,它是周期信号。
为了证明这一点,可以根据式(1.11),如果存在一个T而使下式成立:
则x (t)就是周期的。或者,由于
要使x(t)是周期的,就必须有
① 若ω0 =0,则x(t)=1,这时对任何T值x(t)都是周期的;
② 若ω0≠0,那么使式(1.23)成立的最小正T值,即基波周期T。应为
可见e^jω0t和e^-jω0t都是具有同一基波周期的周期信号。
与周期复指数信号密切相关的一种信号是正弦信号(sinusoidal signal)
和复指数信号一样,正弦信号也是周期信号,其基波周期T0由式(1.24)确定。
正弦和周期复指数信号也可以用来描述很多物理过程的特性,尤其是存储能量的物理系统。
利用欧拉(Euler)关系,复指数信号可以用与其相同基波周期的正弦信号来表示,即:
正弦信号也能用相同基波周期的复指数信号来表示,即:
正弦信号还可以用复指数信号表示为:
从式(1.24)可以看到,连续时间正弦信号或一个周期复指数信号,其基波周期T0是与ω0成反比的,也称ω0为基波频率。
周期信号,尤其是式(1.21)的复指数信号和式(1.25)的正弦信号,给出了具有无限能量但有有限平均功率的这类信号的例子。
周期信号一定是功率信号!!!
① 周期复指数信号在一个周期T0内的总能量 & 平均功率
② 周期复指数信号在无穷区间的平均功率为1
同理,正弦(余弦)信号也是功率信号,平均功率为1
一组成谐波关系(具有公共周期T0)的复指数信号的集合就是一组其基波频率为某一正频率ω0的整数倍的周期复指数信号。即:
(3) 一般复指数信号
最―般情况下的复指数信号可以借助于已经讨论过的实指数信号和周期复指数信号来表示和说明。
考虑某一复指数Ce^at,将C用极坐标,a用笛卡儿坐标表示,则有:
利用欧拉公式,可进一步展开为:
若r=0,则复指数信号的实部和虚部都是正弦的;
若r>0,其实部和虚部则是一个振幅呈指数增长的正弦信号。
若r<0,则为振幅呈指数衰减的正弦信号。
这两种情况如图1.23所示,图中的虚线对应于函数|C|e^rt。由式(1.42)知道|C|e^rt是复指数信号的振幅,可见|C|e^rt起着一种振荡变化的包络作用,也就是说每次振荡的峰值正好落在这两条虚线内。这样,包络线给我们提供了一个十分方便的工具,使我们可以看出振荡幅度的变化趋势。
具有指数衰减振幅的正弦信号常称为阻尼正弦振荡( damped sinusoids)。
1.3.2 离散时间·复指数信号 & 离散时间·正弦信号
离散时间复指数信号(亦称:离散时间复指数序列)定义为:
其中C和α一般均为复数。若令a =e^β,则有另一种表示形式为
虽然从形式上看,式(1.45)更类似于连续时间复指数信号的表达式(1.20),但是在离散时间情况下,往往把离散时间复指数序列写成式(1.44)更为方便和实用些。
(1) 实指数信号
如果C和α都是实数,那么就会有如图1.24所示的几种特性。
① 若lal >1,则信号随n呈指数增长;
② 若lal<1,则信号随n呈指数衰减;
③ 若α是正值,则Cα^n的所有值都具有同一符号;
④ 若α为负值,则x[n]的符号交替变化;
⑤ 若α=1,x[n]就是一个常数;
⑥ 若a = -1,x[n]的值就在+C和-C之间交替变化。
(2) 正弦信号
如果将式(1.45)中的β局限为纯虚数,即lαl=1,就可以得到另一个重要的复指数序列。具体而言,考虑如下序列:
与连续时间情况一样,这个信号是与正弦信号密切相关的。
离散时间正弦信号:
图1.25中示出了三个正弦序列的例子:
与前面的做法一样,利用欧拉公式可以将复指数和正弦序列联系起来为:
式(1.46)和式(1.47)的信号就是在离散时间信号中具有无限总能量和有限平均功率的例子。
离散纯虚指数信号、离散正弦信号……等周期信号都是功率信号!
(3) 一般复指数信号
一般离散时间复指数信号可以用实指数和正弦信号来表示。具体而言,将C和α均以极坐标形式给出,即
则有
① |α|=1,复指数序列的实部和虚部都是正弦序列。
② |a| <1,其实部和虚部为正弦序列乘以一个呈指数衰减的序列。
③ |a| >1,则乘以一个呈指数增长的序列。图1.26示出了这些信号的例子。
1.3.3 离散时间复指数序列·的周期性质(重点)
虽然在连续时间和离散时间信号之间有很多相似之处,但是也存在一些重要的差别。其中之一是关于离散时间纯虚指数信号e^jω0n的。
连续时间虚指数信号的 t 可以取任意2π/|ω0|得到的T0——必是周期信号。
离散时间虚指数信号的 n 无法取任意2π/|ω0|得到的N0——不一定是周期信号。
① N0 = 2π/|ω0|是整数——周期信号
② N0 = 2π/|ω0|是有理分数——周期信号
③ N0 = 2π/|ω0|是无理数——非周期信号
连续时间信号e^jω0t具有以下两个性质——
① ω以愈大,信号振荡的速率就愈高;
② e^jω0t对任何ω0值都是周期的。
离散时间信号e^jω0n的以上两个性质分析——
(1)第一个性质
考虑频率为ω0+2π的离散时间复指数信号:
式(1.51)表明,离散时间复指数信号在频率ω0+2π与频率ω0时是完全一样的。这一点和连续时间复指数信号e^jω0t完全不同,后者不同的ω0就对应着不同的信号;
而在离散时间情况下,具有频率为ω0的复指数信号与ω0+2π,ω0+4π,…等等这些频率的复指数信号则是一样的。
因为离散时间信号的n只取整数,e^j2πn必为1。
因此,在考虑这种离散时间复指数信号时,仅仅需要在某一个2π间隔内选择ω0即可。虽然从式(1.51)来看,任何2n闾隔都是可以的,但在大多数情况下总是利用0≤ω0<2π或者-π≤og<π 这样一个区间。
由于式(1.51)指出的周期性质,e^jω0n就不具有随ω0在数值上的增加而不断增加其振荡速率的特性。
事实上如图1.27所示,而是随着ω0从0开始增加,其振荡速率愈来愈快,直到ω0 = π为止,然后若继续增加ω0,其振荡速率就会下降,直到ω0 = 2π为止,这时又得到与ω0=0时同样的结果(常数序列)。
因此,离散时间复指数的低频部分(也就是慢变化)位于ω0在(0,2π)和其他任何π的偶数倍值附近;而高频部分位于ω0=±π及其他任何π的奇数倍值附近。
值得注意的是,在ω0=π或任何其他π的奇数倍处有
以至于信号在每一点上都改变符号,产生剧烈振荡,这在信号调试中是应该极力避免的,如图1.27(e)所示。
(2)第二个性质
为了使信号e^jω0n是周期的,周期为N>0,就必须有
N=m·2π/ω0
结论:若ω0/2π为一个有理数,e^jω0n就是周期的;否则就不是周期的。(由式1.56)
这一结论对离散时间正弦信号也是成立的。
离散时间复指数信号——
基波周期:
基波频率:
当然,若ω0=0,基波频率为0,基波周期无定义,这与连续时间情况下是相同的。
表1.1中综合了连续时间信号e^jω0t和离散时间信号e^jω0n之间的一些不同点。
m在于纠正:对2π/ω取整。
与连续时间情况一样,考虑一组成谐波关系的周期离散时间复指数信号,即一组具有公共周期N的周期复指数信号,由式(1.56)可知,这些信号的频率都是基波频率2T/N的整倍数,即
在连续时间情况下,这些成谐波关系的信号各不相同的。然而,由于式(1.51)的原因,在离散时间仅有N个互不相同的周期复指数信号。
1.4 单位冲激函数、单位阶跃函数
这一节要介绍另外两个基本信号——单位冲激、单位阶跃函数。
1.4.1 离散时间单位脉冲序列 & 单位阶跃序列
(1)离散时间单位脉冲(样本)序列
最简单的离散时间信号之一就是单位脉冲(unit impulse),或称单位样本( unit sample),定义为
如图所示。
第二个基本的离散时间信号是离散时间单位阶跃( unit step),用u[n]表示,定义为
如图所示。
离散时间单位脉冲和单位阶跃之间存在着密切的关系——
① 离散时间单位脉冲是离散时间单位阶跃的一次差分:
② 离散时间阶跃是单位样本的求和函数:
或者写作(令k=n-m):
等效为:
式(1.67)的一种解释是,可以把它看成一些延时脉冲的叠加,也就是说将其看成在n=0发生的δ[n],在n=1发生的δ[n-1],以及在n=2发生的δ[n-2]…等的和。
在第2章将对这种解释进行更直接的应用。
单位脉冲的采样性质
单位脉冲序列可以用于一个信号在n=0时的值的采样,因为δ[n]仅在n=0为非零值(等于1),所以有
更一般的情况是,若考虑发生在n=n0处的单位脉冲δ[ n-n0 ],那么就有
(移位)单位脉冲的这种采样性质在第2章和第7章中将起到重要的作用
1.4.2 连续时间单位阶跃函数 & 单位冲激函数
连续时间单位阶跃函数u(t)定义为
如图所示。
单位阶跃在t=0这一点是不连续的。
连续时间单位冲激函数和单位阶跃函数之间存在着密切的关系——
① 连续时间单位阶跃函数是单位冲激函数的积分函数:
② 连续时间单位冲激函数是单位阶跃函数的一次微分:
4个“单位”函数:前3个指高度为1,最后1个指面积为1(高度∞)
与离散时间情况相比,利用式(1.72)来表示单位冲激函数存在一定的困难,这是因为u(t)在t=0是不连续的,因此正规来研是个可微的。然而,可以考虑把式(1.72)解释成图1.33所示信号u△(t)的一种近似,这里u△(t)从0升到1是在一个较短的时间间隔△内完成的。
很自然,瞬时变化的单位阶跃可以看成u△(t)的一种理想化的结果,因为△是这样的短暂以至于对任何实际问题来说无关紧要。正规地说,u(t)是当△->0时,u△(t)的极限。
现在来考虑这一导数
如图所示。
注意,δ△(t)是一个持续期为△的短脉冲,而且对任何△值,其面积都为1。随着△→0,δ△(t)变得愈来愈窄,愈来愈高,但始终保持单位面积。它的极限形式
就能看成△变为无穷小后,短脉冲δ△(t)的一种理想化的结果。事实上,因为δ(t)没有持续期,但有面积,因此就用图1.35的符号,在t=0处用箭头指出脉冲的面积集中在t=0,用箭头旁边的高度“1”来表示该冲激的面积,称为冲激强度。
更为一般地,kδ(t)的面积就是k,因此有
如图1.36所示,箭头的高度选为正比于冲激的面积。
若把式(1.71)的积分变量τ置换为σ=t-τ,就可以将连续时间单位阶跃和单位冲激函数之间的关系表示成另一种形式,即
或等效为
连续时间冲激函数的采样性质
考虑一个冲激和一些常规连续时间函数x(t)的乘积,这个乘积是最容易按照式(1.74)δ(t)的定义来给予说明的,具体而言,考虑下式:
在图1.39(a)中已经画出了这两个时间函数x(t)和δ△(t),图1.39(b)是乘积的非零部分经过放大的结果。
作为对此,在0≤t≤△区间以外,x(t)=0。现在若△足够小,以使x(t)在△内可以近似认为是一个常数x(0),则有
因为δ(t)是△->0时δ△(t)的极限,所以有
更一般地,对出现在任意一点(例如t0)的冲激应该有一个类似的表示式为:
虽然这一节有关单位冲激函数的讨论多少有些不太正规,但是却给出了这个信号的一些重要的直观形象,而这些在本书自始至终都是很有用的。正如我们已经说过的,单位冲激函数应该看成一种理想化的东西。在2.5节将会更为详细地讨论和说明。任何真实的物理系统都会有惯性存在,因此不可能对输入做出瞬时的响应。因此,如果一个足够窄的脉冲加到这样的系统上,该系统的响应就不会受脉冲持续期或脉冲的形状细节而有明显的影响,于是,所关注的脉冲的主要特性就是该脉冲的一种总的综合效果,也就是它的面积。对于那些比其他系统响应快得多的系统,脉冲就必须具有更短的持续期,以达到脉冲形状的细节或者它的持续期不再起作用为止。
对任何物理系统来说,总是可以找到一个“足够窄”脉冲。这样,单位冲激就是这一概念的理想化结果,即对任何系统来说都足够窄的那么一个脉冲。在第2章中将会看到,一个系统对这个理想化脉冲的响应在信号与系统分析中起着关键作用,并且在建立和理解这一作用的过程中,对它将会有更进一步的认识。
1.5 连续时间系统、离散时间系统
连续时间系统(continuous-time system):输入该系统的信号是连续时间信号,系统产生的输出也是连续时间信号。这样的系统可以用图1.41(a)来表示,也常用下式表示。
离散时间系统(dicrete-time system):将离散时间输入信号变换为离散时间输出信号。这样的系统可以用图1.41(b)来表示,也常用下式表示。
本书大部分都将分别但并行地讨论这两种系统。到第7章通过采样的概念再把这两种系统结合起来,并研究用离散时间系统来处理已被采样过的连续时间信号的若干细节问题。
1.5.1 简单系统举例
建立分析和设计系统的一般方法的最重要根据之一就是:很多不同应用场合的系统都具有非常类似的数学描述形式。为了说明这一点,看几个简单的例子。
……
如同以上例子所表明的,来自各种应用领域的系统,它们的数学描述往往具有惊人的共性;而且,正是由于这一点,为在信号与系统分析中建立广为适用的方法提供了强大的动力。
实现这一任务的关键是要鉴别出一类系统,这类系统应具备两个重要特性:
(1)属于这一类的系统都具有一些性质和结构,通过它们可透彻地了解系统的行为,并能对系统的分析建立起有效的方法;
(2)很多在实践中很重要的系统都可以利用这一类系统准确地建模。
本书重点关注并针对称为线性时不变系统这样一个特殊类别的系统所建立的方法,就属于上面所提到的第一个特性方面的问题。下一节将介绍用于表征这类系统的这些性质,以及其他几个很重要的基本系统性质。
实际上,对任何系统分析技术来说,若想具有实用价值,显然上面提到的第二个特性很重要。值得庆幸的是,范围广泛的实际系统都可以用本书重点讨论的这类系统来很好地建模。
然而,至关重要的一点是,用于描述或分析一个实际系统的任何模型都代表了那个系统的一种理想化的情况,由此所得的任何分析结果都仅仅是模型本身的结果。然而,在很多应用中这些理想化对真正的电阻器和电容器来说都是相当准确的,因此只要这些电压和电流保持在工作条件范围以内,就不至于使该线性模型失效,那么使用这样的理想化所进行的分析还是给出了许多有用的结果和结论。虽然,在本书中并不强调这一问题,重要的是要牢记,工程实际中的一个基本问题就是利用建立的方法时要识别出加在一个模型上的假设的适用范围,并保证基于这个模型的任何分析或设计都没有违反这些假设。
1.5.2 系统的互联
在全书中使用的一个重要概念就是系统的互联。很多实际系统都可以当成几个子系统互联构成的。
将一个系统看成它的各部分的互联,就可以利用各组成部分的系统特性,以及它们是如何互联的情况来分析整个系统的工作情况和特性表现。另外,借助于一些较简单系统的互联来描述一个系统,还可以用一种有用的方式来综合出由这些较简单的基本构造单元组成的复杂系统。
虽然可以构造成各式各样的系统互联,但是有几种基本形式是经常遇到的——
两个系统的串联(级联):系统1的输出就是系统2的输入,而整个系统变换输入信号首先由系统1处理,然后再由系统2处理。
如图1.42所示,这样的图称为方框图。图中的符号“⊕”表示相加。
当然也可依此来定义三个或更多个系统的级联。
两个系统的并联:系统1和系统2具有相同的输入,并联后的输出是系统1和系统2的输出之和。42(b)所器共用一个放大器和扬声器系统的简单音频系统就是系统开联的一个例于。
除了简单并联外,也能定义两个系统以上的并联,并且还能将级联和并联组合起来,以得到更复
杂的互联。
反馈互联:是系统互联的另一种重要类型,系统1的输出是系统2的输入,而系统2的输出又反馈回来与外加的输入信号一起组成系统1的真正输入。
1.6 基本系统性质
这一节将介绍并讨论连续时间和离散时间系统的几个基本性质。这些性质具有重要的物理意义,并且利用已经建立的信号与系统的语言又具有相当简单的数学表达式。
1.6.1 有记忆系统 & 无记忆系统
无记忆系统:系统的输出仅仅取决于该时刻的输入。
分析:① y[n]仅与x[n]有关;② 无存储系统,不能存储(记忆)y[n-1]、x[n-1]、x[n+1]
【例】:最简单的无记忆系统——恒等系统:y(t) = x(t)。
有记忆系统:系统的输出不仅仅取决于该时刻的输入。
分析:① y[n]不仅与x[n]有关,还与y[n-1]、x[n-1]、x[n-2]……x[0]等有关。
【例】:
(1)离散时间记忆系统
① 累加器(相加器)
亦写作:
即:
② 延迟单元
(2)连续时间记忆系统
① 电容器
大致来说,在一个系统中记忆的概念相应于该系统具有保留或存储不是当前时刻输入信息的功能。
在许多实际系统中,记忆是直接与能量的存储相联系的。
虽然一个系统具有记忆的概念,一般总是使人想到存储过去的输入和输出值,但是我们所给出的定义也会导致把当前的输出与输入和输出的将来值有关的系统也称为记忆系统!
1.6.2 可逆性 & 可逆系统
可逆性:一个系统如果在不同的输入下,导致不同的输出,就称该系统是可逆的。
逆系统:如果一个系统是可逆的,那么就有一个逆系统,逆系统与原系统级联后,就会产生一个输出w[n]等于第一个系统的输入x[n]。——级联成为“恒等系统”
【例】
(1)连续时间可逆系统
(2)离散时间可逆系统
累加器的逆系统
(3)不可逆系统
论证可逆系统:找到一个逆系统
论证不可逆系统:针对不同的输入,有相同的输出
1.6.3 因果性
因果系统(不可预测系统):一个系统在任何时刻的输出只取决于现在的输入及过去的输入,该系统就称为因果系统。换句话说,系统的输出仅对现在和过去的输入做出响应。
特点:系统的输出无法预测未来的输入值。
因此,对于一个因果系统,若两个输入直到某一个时间t0或n0以前都是相同的,那么在这同一时间以前相应的输出也一定相等。
所有的无记忆系统都是因果的,因为输出仅仅对当前的输入值做出响应。
【例】
非因果的平滑系统——对高频起伏的曲线作平滑处理,即对数据取前后平均。
注意:检验系统的因果性时,不一定有显式的x[n+1]
【例1】
y[-1]=x[1]——非因果系统
经验①:仔细检验在全部时间上的输入-输出关系。
【例2】
因果系统(而且是无记忆系统),g(t)=cos(t+1)是除输入x(t)外影响输出y(t)的一个时变函数。
经验②:要把输入信号x(t)的影响仔细地与系统定义中所用到的其他函数的影响区分开来。
1.6.4 稳定性
稳定系统:在小的输入下的响应是不会发散的。
换句话说,就是“不会自激振荡”:一个小的输入引起系统偏移响应后,能自纠复原。
自激振荡:一个小的输入引起系统偏移响应后,小偏移会将系统激发向更大的偏移。
如图所示。
实际系统的稳定性一般来自于能量消耗。(系统阻力)
以上这些例子只是给出了一个有关稳定性概念的直观认识。正式地讲,系统的稳定性可以这样来定义——
稳定性:一个稳定系统,若其输入是有界的(即输入的幅度不是无界增长的),则系统的输出也必须是有界的,因此不可能发散。
这就是本书中使用的稳定性定义。
论证不稳定系统:找一个特定的有界输入而使输出无界。
通常选x(t)=常数C,或者x(t)=u(t)。
论证稳定系统:假设|x(t)|<B有界,验证y(t)有ymin < y(t) < ymax有界。
到目前为止,这一节所介绍的几个系统性质及概念都是非常重要的,并且还将在本书的稍后详细讨论。然而,另外还有两个性质,即时不变性和线性性质,在本书的后续各章中将起到特别重要的作用,在本节的余下部分将对这两个很重要的概念给予重点介绍并进行初步讨论。
1.6.5 时不变性
时不变性:系统的特性和行为不随时间而变。
我的理解:输入-输出的对应关系(函数关系)不随时间发生改变。
数学表达式:
x[n]——>y[n],则x[n-m]——>y[n-m];
x(t)——>y(t),则x(t-t0)——>y(t-t0);
【例】
(1)时不变系统
(2)时变系统
即:y(t)=x(t)g(t)——时变系统
注意:x2(t)=x1(t-2),x2(2t) = x1(2t-2) ≠ x(2t-4)——2t替换t
1.6.6 线性
线性系统的叠加性质:如果某一个输入是由几个信号的加权和组成的,那么输出也就是系统对这组信号中每一个的响应的加权和。
叠加性是可加性、齐次性的整体体现。
① 可加性
② 比例性(齐次性)
需要注意的是一个系统可以:
① 是线性的,而不必是时不变的。
② 是时不变的,而不必是线性的。
线性系统的表达式:
其中a,b为复常数。
更一般地,若
则
对于线性系统来说,叠加性质的一个直接结果就是——零输入产生零输出(零输入-零输出特性)
【例1】
【例2】
【例3】
【例4】
增量线性系统:输出响应的增量与输入信号的增量之间呈线性关系。
——系统的总输出由一个线性系统的响应与一个零输入响应的叠加来完成。