引力搜索算法(GSA)的MATLAB代码复现

引力搜索算法(Gravitational Search Algorithm,GSA)是一种基于引力模拟的优化算法,它模拟天体之间的引力作用,并通过引力和质量的变化来更新搜索代理(代表搜索空间中的潜在解),从而找到优化问题的最佳解。 下面是 Python 实现 GSA 算法代码: ```python import numpy as np import random # 初始化参数 n = 50 # 搜索代理的数量 m = 2 # 目标问题的维度 G0 = 100 # 引力常数 max_iter = 1000 # 最大迭代次数 eps = 1e-6 # 收敛阈值 # 定义目标函数 def f(x): return (x[0] - 2) ** 2 + (x[1] - 1) ** 2 # 初始化搜索代理位置、速度和质量 X = np.random.rand(n, m) * 10 # 位置范围为 [0,10] V = np.zeros((n, m)) # 初始速度为0 M = np.ones(n) # 质量均为1 # 计算每个搜索代理的适应度值(即目标函数值) fitness = np.array([f(x) for x in X]) # 开始迭代 for it in range(max_iter): # 计算每个搜索代理之间的引力 G = G0 / (it + 1) # 引力常数根据迭代次数递减 dist = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: dist[i, j] = np.linalg.norm(X[i] - X[j]) # 计算欧几里得距离 F = G * np.tile(M.reshape((-1, 1)), (1, n)) * np.tile(M.reshape((1, -1)), (n, 1)) / (dist ** 2 + eps) # F[i,j] 表示第 i 个搜索代理对第 j 个搜索代理的引力大小 # 计算每个搜索代理所受到的引力和产生的加速度 acc = np.zeros((n, m)) for i in range(n): for j in range(n): if i != j: acc[i] += F[i, j] * (X[j] - X[i]) / (np.linalg.norm(X[j] - X[i]) + eps) # 计算加速度 V = np.random.rand(n, m) * V + acc # 更新速度 X_new = X + V # 更新位置 # 判断新位置是否超出边界 X_new = np.clip(X_new, 0, 10) # 计算新位置的适应度值 fitness_new = np.array([f(x) for x in X_new]) # 计算每个搜索代理的质量 M_new = M.copy() for i in range(n): if fitness_new[i] < fitness[i]: M_new[i] *= 1.2 # 适应度提升时质量增加 else: M_new[i] *= 0.8 # 适应度下降时质量减少 # 更新搜索代理的位置、质量和适应度值 X = X_new.copy() M = M_new.copy() fitness = fitness_new.copy() # 输出最终结果 best_index = np.argmin(fitness) print("最优解:", X[best_index]) print("最优目标值:", fitness[best_index]) ``` 在这个例子中,我们寻找 $f(x)=(x_1-2)^2+(x_2-1)^2$ 的最小值,目标函数的输入是一个 $2$ 维向量 $x=(x_1,x_2)$。算法生成 $50$ 个搜索代理,每个搜索代理的位置和速度被初始化为一个 $m=2$ 维的随机向量。随着迭代的进行,搜索代理之间的引力随着 $G_0/(it+1)$ 的递减而减小。每个搜索代理受到的引力和加速度根据上面的公式计算,然后用当前速度更新位置。更新后的搜索代理位置被修剪到区间 $[0,10]$,以确保它们不超出问题的搜索空间。搜索代理的质量在每个迭代中随适应度值的变化而变化。最终,算法输出找到的最优解和最优目标函数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值