数据处理和分析之分类算法:XGBoost:特征工程与选择

数据处理和分析之分类算法:XGBoost 特征工程与选择
数据预处理
数据预处理是机器学习项目中至关重要的一步,它直接影响到模型的性能和预测准确性。在使用 XGBoost 进行分类任务之前,数据预处理包括数据清洗、数据转换和数据标准化与归一化等步骤。
数据清洗
数据清洗涉及处理数据集中的缺失值、异常值和重复数据。缺失值可以使用填充或删除的方法处理,异常值需要根据业务逻辑判断是否保留,重复数据则通常需要删除。
示例代码:处理缺失值
import pandas as pd
from sklearn