【机器学习算法实践】基于XGBoost的分类预测,运用好模型的基础是做好特征工程,寻找属性之间的关系。运用好模型还得调参

  • XGBoost处理回归问题,它的基模型是CART回归树,它有两个特点:(1)CART树,是一颗二叉树。(2)回归树,最后拟合结果是连续值。基于天气数据集的XGBoost分类实践:(数据集,问题分析思路来自阿里云天池课堂)

    • Step1: 库函数导入

    • Step2: 数据读取/载入

    • Step3: 数据信息简单查看

    • Step4: 可视化描述

    • Step5: 对离散变量进行编码

    • Step6: 利用 XGBoost 进行训练与预测

    • Step7: 利用 XGBoost 进行特征选择

    • Step8: 通过调整参数获得更好的效果

  • 基于天气数据集的XGBoost分类实战机器学习原理与实践 -AI学习-阿里云天池 (aliyun.com)

    • 在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。本次我们选择天气数据集进行方法的尝试训练,现在有一些由气象站提供的每日降雨数据,我们需要根据历史降雨数据来预测明天会下雨的概率。样例涉及到的测试集数据test.csv与train.csv的格式完全相同,但其RainTomorrow未给出,为预测变量。机器学习算法[六]:基于天气数据集的XGBoost分类预测 - Heywhale.com

    • 数据的各个特征描述如下:

      • 特征名称意义取值范围
        Date日期字符串
        Location气象站的地址字符串
        MinTemp最低温度实数
        MaxTemp最高温度实数
        Rainfall降雨量实数
        Evaporation蒸发量实数
        Sunshine光照时间实数
        WindGustDir最强的风的方向字符串
        WindGustSpeed最强的风的速度实数
        WindDir9am早上9点的风向字符串
        WindDir3pm下午3点的风向字符串
        WindSpeed3pm下午3点的风速实数
        Humidity9am早上9点的湿度实数
        Humidity3pm下午3点的湿度实数
        Pressure9am早上9点的大气压实数
        Pressure3pm早上3点的大气压实数
        Cloud9am早上9点的云指数实数
        Cloud3pm早上3点的云指数实数
        Temp9am早上9点的温度实数
        Temp3pm早上3点的温度实数
        RainToday今天是否下雨No,Yes
        RainTomorrow明天是否下雨No,Yes
  • ##  基础函数库
    import numpy as np 
    import pandas as pd
    ## 绘图函数库
    import matplotlib.pyplot as plt
    import seaborn as sns
    ## 我们利用Pandas自带的read_csv函数读取并转化为DataFrame格式
    data = pd.read_csv('./data/train.csv')
    ## 利用.info()查看数据的整体信息
    data.info()
    
  • 在这里插入图片描述

  • 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部

  • data.head()
    
  • 在这里插入图片描述

  • 这里我们发现数据集中存在NaN,一般的我们认为NaN在数据集中代表了缺失值,可能是数据采集或处理时产生的一种错误。这里我们采用-1将缺失值进行填补,还有其他例如“中位数填补、平均数填补”的缺失值处理方法有兴趣的同学也可以尝试。

  • data = data.fillna(-1)
    data.tail()
    
  • 在这里插入图片描述

  • 利用value_counts函数查看训练集标签的数量

    • pd.Series(data['RainTomorrow']).value_counts()
      
    • No     82786
      Yes    23858
      Name: RainTomorrow, dtype: int64
      
  • 我们发现数据集中的负样本数量远大于正样本数量,这种常见的问题叫做“数据不平衡”问题,在某些情况下需要进行一些特殊处理。

    • ## 对于特征进行一些统计描述
      data.describe()
      
    • 在这里插入图片描述

  • 可视化描述 为了方便,我们先纪录数字特征与非数字特征:

    • numerical_features = [x for x in data.columns if data[x].dtype == np.float64]
      category_features = [x for x in data.columns if data[x].dtype != np.float64 and x != 'RainTomorrow']
      ## 选取三个特征与标签组合的散点可视化
      sns.pairplot(data=data[['Rainfall',
      'Evaporation',
      'Sunshine'] + ['RainTomorrow']], diag_kind='hist', hue= 'RainTomorrow')
      plt.show()
      
    • 在这里插入图片描述

  • 从上图可以发现,在2D情况下不同的特征组合对于第二天下雨与不下雨的散点分布,以及大概的区分能力。相对的Sunshine与其他特征的组合更具有区分能力.

    • for col in data[numerical_features].columns:
          print(col)
          if col != 'RainTomorrow':
              sns.boxplot(x='RainTomorrow', y=col, saturation=0.5, palette='pastel', data=data)
              plt.title(col)
              plt.show()
      
    • 在这里插入图片描述

  • 利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。我们可以发现Sunshine,Humidity3pm,Cloud9am,Cloud3pm的区分能力较强:

    • tlog = {}
      for i in category_features:
          tlog[i] = data[data['RainTomorrow'] == 'Yes'][i].value_counts()
      flog = {}
      for i in category_features:
          flog[i] = data[data['RainTomorrow'] == 'No'][i].value_counts()
      plt.figure(figsize=(15,10))
      plt.subplot(1,2,1)
      plt.title('RainTomorrow')
      sns.barplot(x = pd.DataFrame(tlog['Location']).sort_index()['Location'], y = pd.DataFrame(tlog['Location']).sort_index().index, color = "red")
      plt.subplot(1,2,2)
      plt.title('Not RainTomorrow')
      sns.barplot(x = pd.DataFrame(flog['Location']).sort_index()['Location'], y = pd.DataFrame(flog['Location']).sort_index().index, color = "blue")
      plt.show()
      
    • 在这里插入图片描述

  • 从上图可以发现不同地区降雨情况差别很大,有些地方明显更容易降雨

    • plt.figure(figsize=(10,2))
      plt.subplot(1,2,1)
      plt.title('RainTomorrow')
      sns.barplot(x = pd.DataFrame(tlog['RainToday'][:2]).sort_index()['RainToday'], y = pd.DataFrame(tlog['RainToday'][:2]).sort_index().index, color = "red")
      plt.subplot(1,2,2)
      plt.title('Not RainTomorrow')
      sns.barplot(x = pd.DataFrame(flog['RainToday'][:2]).sort_index()['RainToday'], y = pd.DataFrame(flog['RainToday'][:2]).sort_index().index, color = "blue")
      plt.show()
      
    • 在这里插入图片描述

  • 上图我们可以发现,今天下雨明天不一定下雨,但今天不下雨,第二天大概率也不下雨。

  • 对离散变量进行编码:由于XGBoost无法处理字符串类型的数据,我们需要一些方法讲字符串数据转化为数据。一种最简单的方法是把所有的相同类别的特征编码成同一个值,例如女=0,男=1,狗狗=2,所以最后编码的特征值是在特征数量[0,特征数-1]之间的整数。除此之外,还有独热编码、求和编码、留一法编码等等方法可以获得更好的效果。

    • ## 把所有的相同类别的特征编码为同一个值
      def get_mapfunction(x):
          mapp = dict(zip(x.unique().tolist(),
               range(len(x.unique().tolist()))))
          def mapfunction(y):
              if y in mapp:
                  return mapp[y]
              else:
                  return -1
          return mapfunction
      for i in category_features:
          data[i] = data[i].apply(get_mapfunction(data[i]))
      ## 编码后的字符串特征变成了数字
      data['Location'].unique()
      
    • array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
             17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
             34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48],
            dtype=int64)
      
  • 利用 XGBoost 进行训练与预测

    • ## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
      from sklearn.model_selection import train_test_split
      ## 选择其类别为0和1的样本 (不包括类别为2的样本)
      data_target_part = data['RainTomorrow']
      data_features_part = data[[x for x in data.columns if x != 'RainTomorrow']]
      ## 测试集大小为20%, 80%/20%分
      x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2023)
      #查看标签数据
      print(y_train[0:2],y_test[0:2])
      # 替换Yes为1,No为0
      y_train = y_train.replace({'Yes': 1, 'No': 0})
      y_test  = y_test.replace({'Yes': 1, 'No': 0})
      # 打印修改后的结果
      print(y_train[0:2],y_test[0:2])
      
    • 62535    No
      6705     No
      Name: RainTomorrow, dtype: object 35532    No
      68563    No
      Name: RainTomorrow, dtype: object
      62535    0
      6705     0
      Name: RainTomorrow, dtype: int64 35532    0
      68563    0
      Name: RainTomorrow, dtype: int64
      
  • 导入XGBoost模型,先不用设置参数,后面网格搜索之后在作参数

    • from xgboost.sklearn import XGBClassifier
      ## 定义 XGBoost模型 
      clf = XGBClassifier()
      # 在训练集上训练XGBoost模型
      clf.fit(x_train, y_train)
      ## 在训练集和测试集上分布利用训练好的模型进行预测
      train_predict = clf.predict(x_train)
      test_predict = clf.predict(x_test)
      from sklearn import metrics
      ## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
      print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
      print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
      ## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
      confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
      print('The confusion matrix result:\n',confusion_matrix_result)
      # 利用热力图对于结果进行可视化
      plt.figure(figsize=(8, 6))
      sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
      plt.xlabel('Predicted labels')
      plt.ylabel('True labels')
      plt.show()
      
    • 在这里插入图片描述

  • 利用 XGBoost 进行特征选择

    • # XGBoost的特征选择属于特征选择中的嵌入式方法,在XGboost中可以用属性feature_importances_去查看特征的重要度。
      sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)
      
    • 在这里插入图片描述

  • 从图中我们可以发现下午3点的湿度与今天是否下雨是决定第二天是否下雨最重要的因素。除此之外,我们还可以使用XGBoost中的下列重要属性来评估特征的重要性。

      • weight:是以特征用到的次数来评价
      • gain:当利用特征做划分的时候的评价基尼指数
      • cover:利用一个覆盖样本的指标二阶导数(具体原理不清楚有待探究)平均值来划分。
      • total_gain:总基尼指数
      • total_cover:总覆盖
    • from sklearn.metrics import accuracy_score
      from xgboost import plot_importance
      def estimate(model,data):
          #sns.barplot(data.columns,model.feature_importances_)
          ax1=plot_importance(model,importance_type="gain")
          ax1.set_title('gain')
          ax2=plot_importance(model, importance_type="weight")
          ax2.set_title('weight')
          ax3 = plot_importance(model, importance_type="cover")
          ax3.set_title('cover')
          plt.show()
      def classes(data,label,test):
          model=XGBClassifier()
          model.fit(data,label)
          ans=model.predict(test)
          estimate(model, data)
          return ans
      ans=classes(x_train,y_train,x_test)
      pre=accuracy_score(y_test, ans)
      print('acc=',accuracy_score(y_test,ans))
      
    • 在这里插入图片描述

    • 这些图同样可以帮助我们更好的了解其他重要特征。

  • 通过调整参数获得更好的效果,XGBoost中包括但不限于下列对模型影响较大的参数:

      1. learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。
      2. subsample:系统默认为1。这个参数控制对于每棵树,随机采样的比例。减小这个参数的值,算法会更加保守,避免过拟合, 取值范围零到一。
      3. colsample_bytree:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
      4. max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。
    • 核心参数调优

      • eta[默认0.3] 通过为每一颗树增加权重,提高模型的鲁棒性。 典型值为0.01-0.2;

      • min_child_weight[默认1] 决定最小叶子节点样本权重和。 这个参数可以避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,则会导致模型拟合不充分。

      • max_depth[默认6] 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。 典型值:3-10.

      • max_leaf_nodes 树上最大的节点或叶子的数量。 可以替代max_depth的作用。 这个参数的定义会导致忽略max_depth参数。

      • gamma[默认0] 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关。

      • max_delta_step[默认0] 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。 但是当各类别的样本十分不平衡时,它对分类问题是很有帮助的。

      • subsample[默认1] 这个参数控制对于每棵树,随机采样的比例。 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-1

      • colsample_bytree[默认1] 用来控制每棵随机采样的列数的占比(每一列是一个特征)。 典型值:0.5-1

      • colsample_bylevel[默认1] 用来控制树的每一级的每一次分裂,对列数的采样的占比。 subsample参数和colsample_bytree参数可以起到相同的作用,一般用不到。

      • .lambda[默认1] 权重的L2正则化项。(和Ridge regression类似)。 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。

      • alpha[默认1] 权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。

      • scale_pos_weight[默认1] 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

  • 网格调参法【机器学习笔记】【随机森林】【乳腺癌数据上的调参】_n_estimators_桜キャンドル淵的博客-CSDN博客

    • 调节模型参数的方法有贪心算法、网格调参、贝叶斯调参等。这里我们采用网格调参,它的基本思想是穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果:

    • ## 从sklearn库中导入网格调参函数
      from sklearn.model_selection import GridSearchCV
      ## 定义参数取值范围
      learning_rate = [0.1, 0.3,]
      subsample = [0.8]
      colsample_bytree = [0.6, 0.8]
      max_depth = [3,5]
      parameters = { 'learning_rate': learning_rate,
                    'subsample': subsample,
                    'colsample_bytree':colsample_bytree,
                    'max_depth': max_depth}
      model = XGBClassifier(n_estimators = 20)
      ## 进行网格搜索
      clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=1,n_jobs=-1)
      clf = clf.fit(x_train, y_train)  
      ## 网格搜索后的最好参数为
      clf.best_params_
      
    • {'colsample_bytree': 0.8,
       'learning_rate': 0.3,
       'max_depth': 5,
       'subsample': 0.8}
      
  • 在训练集和测试集上分布利用最好的模型参数进行预测

    • ## 定义带参数的 XGBoost模型 
      clf = XGBClassifier(colsample_bytree = 0.8, learning_rate = 0.3, max_depth= 5, subsample = 0.8)
      # 在训练集上训练XGBoost模型
      clf.fit(x_train, y_train)
      train_predict = clf.predict(x_train)
      test_predict = clf.predict(x_test)
      ## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
      print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
      print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
      ## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
      confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
      print('The confusion matrix result:\n',confusion_matrix_result)
      # 利用热力图对于结果进行可视化
      plt.figure(figsize=(8, 6))
      sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
      plt.xlabel('Predicted labels')
      plt.ylabel('True labels')
      plt.show()
      
    • 在这里插入图片描述

  • XGBoost的主要优缺点:

    • 简单易用。相对其他机器学习库,用户可以轻松使用XGBoost并获得相当不错的效果。高效可扩展。在处理大规模数据集时速度快效果好,对内存等硬件资源要求不高。鲁棒性强。相对于深度学习模型不需要精细调参便能取得接近的效果。XGBoost内部实现提升树模型,可以自动处理缺失值。

    • 相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先XGBoost。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羞儿

写作是兴趣,打赏看心情

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值