数据处理和分析之分类算法:朴素贝叶斯(NaiveBayes):垃圾邮件过滤器设计
数据处理和分析之分类算法:朴素贝叶斯 (Naive Bayes):垃圾邮件过滤器设计
简介和背景
朴素贝叶斯算法的基本原理
朴素贝叶斯分类器是一种基于概率论的分类方法,它假设特征之间相互独立。在垃圾邮件过滤器的设计中,朴素贝叶斯算法通过计算邮件中每个单词在垃圾邮件和非垃圾邮件中出现的概率,来预测邮件是否为垃圾邮件。
示例代码:朴素贝叶斯分类器的实现
import numpy as np
from sklearn.naive_bayes <