数据处理和分析之分类算法:朴素贝叶斯(NaiveBayes):垃圾邮件过滤器设计

数据处理和分析之分类算法:朴素贝叶斯(NaiveBayes):垃圾邮件过滤器设计

在这里插入图片描述

数据处理和分析之分类算法:朴素贝叶斯 (Naive Bayes):垃圾邮件过滤器设计

简介和背景

朴素贝叶斯算法的基本原理

朴素贝叶斯分类器是一种基于概率论的分类方法,它假设特征之间相互独立。在垃圾邮件过滤器的设计中,朴素贝叶斯算法通过计算邮件中每个单词在垃圾邮件和非垃圾邮件中出现的概率,来预测邮件是否为垃圾邮件。

示例代码:朴素贝叶斯分类器的实现
import numpy as np
from sklearn.naive_bayes <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值