数据处理和分析之分类算法:随机森林(RandomForest):随机森林的常见问题与解决策略
数据处理和分析之分类算法:随机森林 (Random Forest)
随机森林简介
随机森林算法的基本概念
随机森林(Random Forest)是一种集成学习方法,由Leo Breiman在2001年提出。它通过构建多个决策树并综合它们的预测结果来提高分类或回归的准确性。每个决策树都是在数据集的随机子集上训练的,这增加了模型的多样性和鲁棒性。随机森林的预测结果是基于所有决策树的多数投票或平均值。
随机森林与决策树的关系
随机森林与决策树的关系密切,但又有本质区别。决策树是一种基本的分类和回归算法,它通过递归地分割数据集来创建树状结构,每个内部节点表示一个特征上的测试,每个分支代表一个测试结果,每个叶节点代表一个类别或数值。然而,决策树容易过拟合,即在训练数据上表现很好,但在新数据上表现不佳。
随机森林通过以下方式