数据处理和分析之关联规则学习:Apriori:关联规则可视化工具使用

数据处理和分析之关联规则学习:Apriori:关联规则可视化工具使用

在这里插入图片描述

数据处理和分析之关联规则学习:Apriori算法原理与应用

Apriori算法的基本概念

Apriori算法是一种用于挖掘频繁项集和关联规则的算法,由R. Agrawal和R. Srikant在1994年提出。它基于一个重要的性质:频繁项集的任何子集也必须是频繁的。这一性质被称为Apriori性质,是算法高效搜索频繁项集的关键。

频繁项集

在给定的交易数据集中,如果一个项集的出现频率或支持度不低于预设的最小支持度阈值,那么这个项集被称为频繁项集。

关联规则

关联规则是从频繁项集中导出的规则,表示两个或多个项之间的关系。例如,从频繁项集{面包, 牛奶}中,可以导出规则“面包->牛奶”,表示购买面包的顾客很可能也会购买牛奶。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值