数据处理和分析之关联规则学习:Apriori:关联规则可视化工具使用
数据处理和分析之关联规则学习:Apriori算法原理与应用
Apriori算法的基本概念
Apriori算法是一种用于挖掘频繁项集和关联规则的算法,由R. Agrawal和R. Srikant在1994年提出。它基于一个重要的性质:频繁项集的任何子集也必须是频繁的。这一性质被称为Apriori性质,是算法高效搜索频繁项集的关键。
频繁项集
在给定的交易数据集中,如果一个项集的出现频率或支持度不低于预设的最小支持度阈值,那么这个项集被称为频繁项集。
关联规则
关联规则是从频繁项集中导出的规则,表示两个或多个项之间的关系。例如,从频繁项集{面包, 牛奶}中,可以导出规则“面包->牛奶”,表示购买面包的顾客很可能也会购买牛奶。