数据处理和分析之数据预处理:数据变换之Box-Cox变换
数据预处理的重要性
数据预处理的定义
数据预处理是指在进行数据分析或机器学习建模之前,对原始数据进行的一系列处理步骤。这些步骤旨在提高数据质量,使其更适合后续的分析或建模过程。数据预处理是数据分析流程中的关键环节,可以显著影响最终分析结果的准确性和可靠性。
数据预处理的目标与步骤
目标
数据预处理的目标主要包括:
- 清洗数据:去除或修正数据中的错误、缺失值和异常值。
- 标准化数据:使数据集中的特征具有相同的尺度,避免某些特征因数值范围大而对模型产生过大的影响。
- 转换数据:通过数学变换,如Box-Cox变换,使数据满足模型的假设条件,如正态分布。
- 减少维度:通过特征选择或特征提取&#x