铁轨安全数据集铁轨数据集铁路数据集。数据集分为两类:螺纹道钉、扣件。可用于铁轨安全检测领域,比如检测铁轨的重要配件---螺纹道钉和扣件是否缺失。数据集都是已经标注好,数据集都是已经标注好的!!!数据集分为训练集与验证集,其中训练集5500多张图片,验证集约1400张图片,数据集格式为txt格式数据集经过增强。可用于训练yolo系列目标检测模型
铁轨数据集 铁路数据集 分为两类:螺纹道钉、扣件。铁路缺陷数据集,比如检测铁轨的重要配件---螺纹道钉和扣件是否缺失。5500多张txt格式 可用于训练yolo系列目标检测模型
张2类检测目标:游泳、溺水带标注 -YOLO格式 可直接用于YOLO系列目标检测算法模型训练 yolov5-yolov10通用数据集 目标检测数据集
- 铁轨安全检测数据集
- 类别:螺纹道钉、扣件
- 用途:铁轨安全检测,检测重要配件是否缺失
- 数据规模:训练集5500多张图片,验证集约1400张图片
- 标注格式:TXT格式,YOLO目标检测格式
- 数据增强:数据集已经经过增强处理
数据集特点
- 高清影像:所有图像均为高清影像,适合用于精确的目标检测。
- 详细标注:每张图像都标注了螺纹道钉、扣件的位置,可以用于训练模型来识别这些重要配件。
- 多样性:涵盖不同时间、天气条件下的铁轨场景,适用于多种环境下的应用。
- 广泛适用性:支持YOLO系列目标检测模型,适用于目标检测任务。
数据集统计
目标类别 | 训练集图像张数 | 验证集图像张数 | 总计图像张数 |
---|---|---|---|
螺纹道钉 | |||
扣件 | |||
总计 | 5500+ | 1400 | 6900+ |
数据集结构
RailwaySafetyDetectionDataset/
├── images/ # 图像文件
│ ├── train/ # 训练集图像
│ │ ├── image_00001.jpg
│ │ ├── image_00002.jpg
│ │ └── ...
│ ├── val/ # 验证集图像
│ │ ├── image_00001.jpg
│ │ ├── image_00002.jpg
│ │ └── ...
├── labels/ # YOLO目标检测标注
│ ├── train/ # 训练集标签
│ │ ├── image_00001.txt
│ │ ├── image_00002.txt
│ │ └── ...
│ ├── val/ # 验证集标签
│ │ ├── image_00001.txt
│ │ ├── image_00002.txt
│ │ └── ...
└── dataset_info.txt # 数据集描述文件
标注格式示例
YOLO目标检测格式
每行表示一个物体的边界框和类别:
class_id cx cy w h
class_id
:类别ID(从0开始编号)- 0:
螺纹道钉
- 1:
扣件
- 0:
cx
:目标框中心点x坐标 / 图像宽度。cy
:目标框中心点y坐标 / 图像高度。w
:目标框宽度 / 图像宽度。h
:目标框高度 / 图像高度。
例如:
0 0.453646 0.623148 0.234375 0.461111
1 0.321021 0.456789 0.123456 0.345678
使用该数据集进行模型训练
1. 数据预处理与加载
首先,我们需要加载数据并将其转换为适合YOLOv5等模型使用的格式。假设你已经安装了PyTorch和YOLOv5。
import os
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
class RailwaySafetyDetectionDataset(Dataset):
def __init__(self, image_dir, label_dir, transform=None):
self.image_dir = image_dir
self.label_dir = label_dir
self.transform = transform
self.image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_name = self.image_files[idx]
img_path = os.path.join(self.image_dir, img_name)
label_path = os.path.join(self.label_dir, img_name.replace('.jpg', '.txt'))
# 加载图像
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
# 加载标注
with open(label_path, 'r') as f:
lines = f.readlines()
boxes = []
labels = []
for line in lines:
class_id, cx, cy, w, h = map(float, line.strip().split())
boxes.append([cx, cy, w, h])
labels.append(int(class_id))
boxes = torch.tensor(boxes, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.int64)
return image, boxes, labels
# 数据增强
transform = transforms.Compose([
transforms.Resize((640, 640)),
transforms.ToTensor(),
])
# 创建数据集
train_dataset = RailwaySafetyDetectionDataset(image_dir='RailwaySafetyDetectionDataset/images/train/', label_dir='RailwaySafetyDetectionDataset/labels/train/', transform=transform)
val_dataset = RailwaySafetyDetectionDataset(image_dir='RailwaySafetyDetectionDataset/images/val/', label_dir='RailwaySafetyDetectionDataset/labels/val/', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, num_workers=4)
2. 构建模型
我们可以使用YOLOv5模型进行目标检测任务。假设你已经克隆了YOLOv5仓库,并按照其文档进行了环境设置。
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
创建数据配置文件 data/railway_safety_detection.yaml
:
train: path/to/RailwaySafetyDetectionDataset/images/train
val: path/to/RailwaySafetyDetectionDataset/images/val
test: path/to/RailwaySafetyDetectionDataset/images/test
nc: 2 # 类别数
names: ['螺纹道钉', '扣件']
3. 训练模型
使用YOLOv5进行训练。
python train.py --img 640 --batch 16 --epochs 100 --data data/railway_safety_detection.yaml --weights yolov5s.pt --cache
4. 评估模型
在验证集上评估模型性能。
python val.py --img 640 --batch 16 --data data/railway_safety_detection.yaml --weights runs/train/exp/weights/best.pt --task test
5. 推理
使用训练好的模型进行推理。
python detect.py --source path/to/test/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.5
实验报告
实验报告应包括以下内容:
- 项目简介:简要描述项目的背景、目标和意义。
- 数据集介绍:详细介绍数据集的来源、规模、标注格式等。
- 模型选择与配置:说明选择的模型及其配置参数。
- 训练过程:记录训练过程中的损失变化、学习率调整等。
- 评估结果:展示模型在验证集上的性能指标(如mAP、准确率)。
- 可视化结果:提供一些典型样本的检测结果可视化图。
- 结论与讨论:总结实验结果,讨论可能的改进方向。
- 附录:包含代码片段、图表等补充材料。
依赖库
确保安装了以下依赖库:
pip install torch torchvision
pip install -r yolov5/requirements.txt
总结
这个铁轨安全检测数据集提供了丰富的标注数据,非常适合用于训练和评估目标检测模型。通过YOLOv5框架,可以方便地构建和训练高性能的目标检测模型。实验报告可以帮助你更好地理解和分析模型的表现,并为进一步的研究提供参考。