Rt-detr改进 魔鬼面具 基于多种基准模型的改进方案
目标检测改进框架 基于RT
文章目录
100余种改进,基于utralytics框架。RTDETR改进。
基于RT-DETR的改进方案,针对“魔鬼面具”目标检测任务,可利用多种基准模型和配置文件进行优化。
示例代码,展示如何使用不同的YAML配置文件来实现这些改进。仅供参考
文章目录
仅供参考

1. 环境准备
确保你已经安装了必要的库,并且配置好了环境:
pip install ultralytics
2. 配置文件说明
每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:
1. yolov5-detr.yaml
- 描述: 使用RT-DETR中的TransformerDecoderHead改进YOLOv5。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov5-detr.yaml
2. yolov5-detr-DWR.yaml
- 描述: 结合Dilation-wise Residual (DWR) 模块进一步增强性能。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR.yaml
3. yolov5-detr-fasternet.yaml
- 描述: 利用FasterNet CVPR2023改进YOLOv5。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov5-detr-fasternet.yaml
4. yolov5-detr-AIFI-LPE.yaml
- 描述: 引入Learned Positional Encoding以提升模型表现。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov5-detr-AIFI-LPE.yaml
5. yolov5-detr-C3-DCNV2.yaml
- 描述: 使用可变形卷积DCNV2改进YOLOv5。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2.yaml
6. yolov5-detr-C3-DCNV3.yaml
- 描述: 使用最新的DCNV3模块进行优化。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV3.yaml
3. 示例代码
以下是一个示例代码,展示如何加载不同配置文件并运行模型:
from ultralytics import YOLO
# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1 # 假设只有一个类别:魔鬼面具
# 加载不同的配置文件并训练模型
def train_model(config_file):
model = YOLO(config_file)
results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
return results
# 使用不同的配置文件进行训练
config_files = [
'ultralytics/cfg/models/yolo-detr/yolov5-detr.yaml',
'ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR.yaml',
'ultralytics/cfg/models/yolo-detr/yolov5-detr-fasternet.yaml',
'ultralytics/cfg/models/yolo-detr/yolov5-detr-AIFI-LPE.yaml',
'ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2.yaml',
'ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV3.yaml'
]
for config in config_files:
print(f"Training with {config}")
train_model(config)
4. 数据集准备
确保你的数据集符合dataset.yaml
文件的要求。一个典型的dataset.yaml
文件如下所示:
train: path/to/train/images
val: path/to/val/images
nc: 1 # 类别数量
names: ['devil_mask'] # 类别名称
5. 运行与评估
在完成训练后,你可以使用以下代码对模型进行评估和测试:
def evaluate_model(model_path, data_path):
model = YOLO(model_path)
results = model.val(data=data_path)
return results
# 评估每个模型
model_paths = [
'runs/train/exp/weights/best.pt', # 根据实际路径调整
'runs/train/exp2/weights/best.pt',
'runs/train/exp3/weights/best.pt',
'runs/train/exp4/weights/best.pt',
'runs/train/exp5/weights/best.pt',
'runs/train/exp6/weights/best.pt'
]
for model_path in model_paths:
print(f"Evaluating {model_path}")
evaluate_model(model_path, data_path)
通过上述步骤,你可以轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。
基于YOLOv8的改进方案,利用RT-DETR中的TransformerDecoderHead和其他优化技术,可以显著提升目标检测性能。以下是详细的代码示例和说明,展示如何使用不同的YAML配置文件来实现这些改进。
1. 环境准备
确保你已经安装了必要的库,并且配置好了环境:
pip install ultralytics
2. 配置文件说明
每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:
1. yolov8-detr.yaml
- 描述: 使用RT-DETR中的TransformerDecoderHead改进YOLOv8。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov8-detr.yaml
2. yolov8-detr-DWR.yaml
- 描述: 结合Dilation-wise Residual (DWR) 模块进一步增强性能。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR.yaml
3. yolov8-detr-fasternet.yaml
- 描述: 利用FasterNet CVPR2023改进YOLOv8。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov8-detr-fasternet.yaml
4. yolov8-detr-AIFI-LPE.yaml
- 描述: 引入Learned Positional Encoding以提升模型表现。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov8-detr-AIFI-LPE.yaml
5. yolov8-detr-C2f-DCNV2.yaml
- 描述: 使用可变形卷积DCNV2改进YOLOv8。
- 路径:
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2.yaml
3. 示例代码
以下是一个示例代码,展示如何加载不同配置文件并运行模型:
from ultralytics import YOLO
# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1 # 假设只有一个类别:魔鬼面具
# 加载不同的配置文件并训练模型
def train_model(config_file):
model = YOLO(config_file)
results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
return results
# 使用不同的配置文件进行训练
config_files = [
'ultralytics/cfg/models/yolo-detr/yolov8-detr.yaml',
'ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR.yaml',
'ultralytics/cfg/models/yolo-detr/yolov8-detr-fasternet.yaml',
'ultralytics/cfg/models/yolo-detr/yolov8-detr-AIFI-LPE.yaml',
'ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2.yaml'
]
for config in config_files:
print(f"Training with {config}")
train_model(config)
4. 数据集准备
确保你的数据集符合dataset.yaml
文件的要求。一个典型的dataset.yaml
文件如下所示:
train: path/to/train/images
val: path/to/val/images
nc: 1 # 类别数量
names: ['devil_mask'] # 类别名称
5. 运行与评估
在完成训练后,你可以使用以下代码对模型进行评估和测试:
def evaluate_model(model_path, data_path):
model = YOLO(model_path)
results = model.val(data=data_path)
return results
# 评估每个模型
model_paths = [
'runs/train/exp/weights/best.pt', # 根据实际路径调整
'runs/train/exp2/weights/best.pt',
'runs/train/exp3/weights/best.pt',
'runs/train/exp4/weights/best.pt',
'runs/train/exp5/weights/best.pt'
]
for model_path in model_paths:
print(f"Evaluating {model_path}")
evaluate_model(model_path, data_path)
6. 具体配置文件示例
yolov8-detr.yaml
# yolov8-detr.yaml
# 使用RT-DETR中的TransformerDecoderHead改进YOLOv8
# 模型架构配置
backbone:
name: 'C3'
depth: [1, 2, 8]
width: [64, 128, 256]
neck:
name: 'TransformerDecoderHead'
num_layers: 6
num_heads: 8
d_model: 256
head:
name: 'YOLOv8Head'
num_classes: 1
anchors: [[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326]]
# 训练配置
train:
epochs: 100
batch_size: 16
img_size: 640
workers: 4
通过上述步骤,你可以轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。
基于RT-DETR-R50的改进方案,利用不同的技术如OrthoNets、DCNV2和DCNV3等来优化模型性能。以下是详细的代码示例和说明,展示如何使用不同的YAML配置文件来实现这些改进。
1. 环境准备
确保你已经安装了必要的库,并且配置好了环境:
pip install ultralytics
2. 配置文件说明
每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:
1. rtdetr-r50-Ortho.yaml
- 描述: 使用OrthoNets中的正交通道注意力机制改进ResNet50-backbone中的Bottleneck。
- 路径:
ultralytics/cfg/models/rt-detr/rtdetr-r50-Ortho.yaml
2. rtdetr-r50-DCNV2.yaml
- 描述: 使用可变形卷积DCNV2改进ResNet50-backbone中的Bottleneck。
- 路径:
ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2.yaml
3. rtdetr-r50-DCNV3.yaml
- 描述: 使用最新的可变形卷积DCNV3模块进行优化。
- 路径:
ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV3.yaml
4. rtdetr-r50-DCNV2-Dynamic.yaml
- 描述: 结合动态可变形卷积进一步增强性能。
- 路径:
ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2-Dynamic.yaml
3. 示例代码
以下是一个示例代码,展示如何加载不同配置文件并运行模型:
from ultralytics import YOLO
# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1 # 假设只有一个类别:魔鬼面具
# 加载不同的配置文件并训练模型
def train_model(config_file):
model = YOLO(config_file)
results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
return results
# 使用不同的配置文件进行训练
config_files = [
'ultralytics/cfg/models/rt-detr/rtdetr-r50-Ortho.yaml',
'ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2.yaml',
'ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV3.yaml',
'ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2-Dynamic.yaml'
]
for config in config_files:
print(f"Training with {config}")
train_model(config)
4. 数据集准备
确保你的数据集符合dataset.yaml
文件的要求。一个典型的dataset.yaml
文件如下所示:
train: path/to/train/images
val: path/to/val/images
nc: 1 # 类别数量
names: ['devil_mask'] # 类别名称
5. 运行与评估
在完成训练后,你可以使用以下代码对模型进行评估和测试:
def evaluate_model(model_path, data_path):
model = YOLO(model_path)
results = model.val(data=data_path)
return results
# 评估每个模型
model_paths = [
'runs/train/exp/weights/best.pt', # 根据实际路径调整
'runs/train/exp2/weights/best.pt',
'runs/train/exp3/weights/best.pt',
'runs/train/exp4/weights/best.pt'
]
for model_path in model_paths:
print(f"Evaluating {model_path}")
evaluate_model(model_path, data_path)
6. 具体配置文件示例
rtdetr-r50-Ortho.yaml
# rtdetr-r50-Ortho.yaml
# 使用OrthoNets中的正交通道注意力机制改进ResNet50-backbone中的Bottleneck
# 模型架构配置
backbone:
name: 'ResNet50'
depth: [3, 4, 6, 3]
width: [64, 128, 256, 512]
attention: 'OrthoNets'
neck:
name: 'TransformerDecoderHead'
num_layers: 6
num_heads: 8
d_model: 256
head:
name: 'RTDETRHead'
num_classes: 1
anchors: [[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326]]
# 训练配置
train:
epochs: 100
batch_size: 16
img_size: 640
workers: 4
通过上述步骤,同学轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。
基于RT-DETR-R18的改进方案,通过替换不同的backbone来优化模型性能。以下是详细的代码示例和说明,展示如何使用不同的YAML配置文件来实现这些改进。
1. 环境准备
确保你已经安装了必要的库,并且配置好了环境:
pip install ultralytics timm
2. 配置文件说明
每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:
1. rt-detr-timm.yaml
- 描述: 使用timm库中的主干网络替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-timm.yaml
2. rt-detr-fasternet.yaml
- 描述: 使用FasterNet CVPR2023替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-fasternet.yaml
3. rt-detr-EfficientViT.yaml
- 描述: 使用EfficientViT CVPR2023替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-EfficientViT.yaml
4. rt-detr-convnextv2.yaml
- 描述: 使用ConvNextV2 2023替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-convnextv2.yaml
5. rt-detr-EfficientFormerV2.yaml
- 描述: 使用EfficientFormerV2 2022替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-EfficientFormerV2.yaml
6. rt-detr-repvit.yaml
- 描述: 使用RepViT ICCV2023替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-repvit.yaml
7. rt-detr-CSwomTramsformer.yaml
- 描述: 使用CSwinTransformer CVPR2022替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-CSwomTramsformer.yaml
8. rt-detr-VanillaNet.yaml
- 描述: 使用VanillaNet替换RT-DETR的backbone。
- 路径:
ultralytics/cfg/models/rt-detr/rt-detr-VanillaNet.yaml
3. 示例代码
示例代码,展示如何加载不同配置文件并运行模型:
from ultralytics import YOLO
# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1 # 假设只有一个类别:魔鬼面具
# 加载不同的配置文件并训练模型
def train_model(config_file):
model = YOLO(config_file)
results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
return results
# 使用不同的配置文件进行训练
config_files = [
'ultralytics/cfg/models/rt-detr/rt-detr-timm.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-fasternet.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-EfficientViT.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-convnextv2.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-EfficientFormerV2.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-repvit.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-CSwomTramsformer.yaml',
'ultralytics/cfg/models/rt-detr/rt-detr-VanillaNet.yaml'
]
for config in config_files:
print(f"Training with {config}")
train_model(config)
4. 数据集准备
确保你的数据集符合dataset.yaml
文件的要求。一个典型的dataset.yaml
文件如下所示:
train: path/to/train/images
val: path/to/val/images
nc: 1 # 类别数量
names: ['devil_mask'] # 类别名称
5. 运行与评估
在完成训练后,你可以使用以下代码对模型进行评估和测试:
def evaluate_model(model_path, data_path):
model = YOLO(model_path)
results = model.val(data=data_path)
return results
# 评估每个模型
model_paths = [
'runs/train/exp/weights/best.pt', # 根据实际路径调整
'runs/train/exp2/weights/best.pt',
'runs/train/exp3/weights/best.pt',
'runs/train/exp4/weights/best.pt',
'runs/train/exp5/weights/best.pt',
'runs/train/exp6/weights/best.pt',
'runs/train/exp7/weights/best.pt',
'runs/train/exp8/weights/best.pt'
]
for model_path in model_paths:
print(f"Evaluating {model_path}")
evaluate_model(model_path, data_path)
6. 具体配置文件示例
rt-detr-timm.yaml
# rt-detr-timm.yaml
# 使用timm库中的主干网络替换RT-DETR的backbone
# 模型架构配置
backbone:
name: 'timm'
model_name: 'resnet18' # 可以选择其他timm支持的模型
neck:
name: 'TransformerDecoderHead'
num_layers: 6
num_heads: 8
d_model: 256
head:
name: 'RTDETRHead'
num_classes: 1
anchors: [[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326]]
# 训练配置
train:
epochs: 100
batch_size: 16
img_size: 640
workers: 4
通过上述步骤,同学轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。