Rt-detr改进 魔鬼面具 目标检测改进框架 基于RT-DETR 面具 detr rtdetr rt-detr 基于YOLOv8的改进方案利用RT-DETR中的Transformer等

Rt-detr改进 魔鬼面具 基于多种基准模型的改进方案
目标检测改进框架 基于RT

100余种改进,基于utralytics框架。RTDETR改进。

基于RT-DETR的改进方案,针对“魔鬼面具”目标检测任务,可利用多种基准模型和配置文件进行优化。
示例代码,展示如何使用不同的YAML配置文件来实现这些改进。仅供参考


仅供参考
在这里插入图片描述

1. 环境准备

确保你已经安装了必要的库,并且配置好了环境:

pip install ultralytics

2. 配置文件说明

每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:

1. yolov5-detr.yaml
  • 描述: 使用RT-DETR中的TransformerDecoderHead改进YOLOv5。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov5-detr.yaml
2. yolov5-detr-DWR.yaml
  • 描述: 结合Dilation-wise Residual (DWR) 模块进一步增强性能。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR.yaml
3. yolov5-detr-fasternet.yaml
  • 描述: 利用FasterNet CVPR2023改进YOLOv5。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov5-detr-fasternet.yaml
4. yolov5-detr-AIFI-LPE.yaml
  • 描述: 引入Learned Positional Encoding以提升模型表现。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov5-detr-AIFI-LPE.yaml
5. yolov5-detr-C3-DCNV2.yaml
  • 描述: 使用可变形卷积DCNV2改进YOLOv5。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2.yaml
6. yolov5-detr-C3-DCNV3.yaml
  • 描述: 使用最新的DCNV3模块进行优化。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV3.yaml

3. 示例代码

以下是一个示例代码,展示如何加载不同配置文件并运行模型:

from ultralytics import YOLO

# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1  # 假设只有一个类别:魔鬼面具

# 加载不同的配置文件并训练模型
def train_model(config_file):
    model = YOLO(config_file)
    results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
    return results

# 使用不同的配置文件进行训练
config_files = [
    'ultralytics/cfg/models/yolo-detr/yolov5-detr.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov5-detr-fasternet.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov5-detr-AIFI-LPE.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV3.yaml'
]

for config in config_files:
    print(f"Training with {config}")
    train_model(config)

4. 数据集准备

确保你的数据集符合dataset.yaml文件的要求。一个典型的dataset.yaml文件如下所示:

train: path/to/train/images
val: path/to/val/images
nc: 1  # 类别数量
names: ['devil_mask']  # 类别名称

5. 运行与评估

在完成训练后,你可以使用以下代码对模型进行评估和测试:

def evaluate_model(model_path, data_path):
    model = YOLO(model_path)
    results = model.val(data=data_path)
    return results

# 评估每个模型
model_paths = [
    'runs/train/exp/weights/best.pt',  # 根据实际路径调整
    'runs/train/exp2/weights/best.pt',
    'runs/train/exp3/weights/best.pt',
    'runs/train/exp4/weights/best.pt',
    'runs/train/exp5/weights/best.pt',
    'runs/train/exp6/weights/best.pt'
]

for model_path in model_paths:
    print(f"Evaluating {model_path}")
    evaluate_model(model_path, data_path)

通过上述步骤,你可以轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。

在这里插入图片描述
基于YOLOv8的改进方案,利用RT-DETR中的TransformerDecoderHead和其他优化技术,可以显著提升目标检测性能。以下是详细的代码示例和说明,展示如何使用不同的YAML配置文件来实现这些改进。

1. 环境准备

确保你已经安装了必要的库,并且配置好了环境:

pip install ultralytics

2. 配置文件说明

每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:

1. yolov8-detr.yaml
  • 描述: 使用RT-DETR中的TransformerDecoderHead改进YOLOv8。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov8-detr.yaml
2. yolov8-detr-DWR.yaml
  • 描述: 结合Dilation-wise Residual (DWR) 模块进一步增强性能。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR.yaml
3. yolov8-detr-fasternet.yaml
  • 描述: 利用FasterNet CVPR2023改进YOLOv8。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov8-detr-fasternet.yaml
4. yolov8-detr-AIFI-LPE.yaml
  • 描述: 引入Learned Positional Encoding以提升模型表现。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov8-detr-AIFI-LPE.yaml
5. yolov8-detr-C2f-DCNV2.yaml
  • 描述: 使用可变形卷积DCNV2改进YOLOv8。
  • 路径: ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2.yaml

3. 示例代码

以下是一个示例代码,展示如何加载不同配置文件并运行模型:

from ultralytics import YOLO

# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1  # 假设只有一个类别:魔鬼面具

# 加载不同的配置文件并训练模型
def train_model(config_file):
    model = YOLO(config_file)
    results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
    return results

# 使用不同的配置文件进行训练
config_files = [
    'ultralytics/cfg/models/yolo-detr/yolov8-detr.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov8-detr-fasternet.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov8-detr-AIFI-LPE.yaml',
    'ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2.yaml'
]

for config in config_files:
    print(f"Training with {config}")
    train_model(config)

4. 数据集准备

确保你的数据集符合dataset.yaml文件的要求。一个典型的dataset.yaml文件如下所示:

train: path/to/train/images
val: path/to/val/images
nc: 1  # 类别数量
names: ['devil_mask']  # 类别名称

5. 运行与评估

在完成训练后,你可以使用以下代码对模型进行评估和测试:

def evaluate_model(model_path, data_path):
    model = YOLO(model_path)
    results = model.val(data=data_path)
    return results

# 评估每个模型
model_paths = [
    'runs/train/exp/weights/best.pt',  # 根据实际路径调整
    'runs/train/exp2/weights/best.pt',
    'runs/train/exp3/weights/best.pt',
    'runs/train/exp4/weights/best.pt',
    'runs/train/exp5/weights/best.pt'
]

for model_path in model_paths:
    print(f"Evaluating {model_path}")
    evaluate_model(model_path, data_path)

6. 具体配置文件示例

yolov8-detr.yaml
# yolov8-detr.yaml
# 使用RT-DETR中的TransformerDecoderHead改进YOLOv8

# 模型架构配置
backbone:
  name: 'C3'
  depth: [1, 2, 8]
  width: [64, 128, 256]

neck:
  name: 'TransformerDecoderHead'
  num_layers: 6
  num_heads: 8
  d_model: 256

head:
  name: 'YOLOv8Head'
  num_classes: 1
  anchors: [[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326]]

# 训练配置
train:
  epochs: 100
  batch_size: 16
  img_size: 640
  workers: 4

通过上述步骤,你可以轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。

在这里插入图片描述
基于RT-DETR-R50的改进方案,利用不同的技术如OrthoNets、DCNV2和DCNV3等来优化模型性能。以下是详细的代码示例和说明,展示如何使用不同的YAML配置文件来实现这些改进。

1. 环境准备

确保你已经安装了必要的库,并且配置好了环境:

pip install ultralytics

2. 配置文件说明

每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:

1. rtdetr-r50-Ortho.yaml
  • 描述: 使用OrthoNets中的正交通道注意力机制改进ResNet50-backbone中的Bottleneck。
  • 路径: ultralytics/cfg/models/rt-detr/rtdetr-r50-Ortho.yaml
2. rtdetr-r50-DCNV2.yaml
  • 描述: 使用可变形卷积DCNV2改进ResNet50-backbone中的Bottleneck。
  • 路径: ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2.yaml
3. rtdetr-r50-DCNV3.yaml
  • 描述: 使用最新的可变形卷积DCNV3模块进行优化。
  • 路径: ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV3.yaml
4. rtdetr-r50-DCNV2-Dynamic.yaml
  • 描述: 结合动态可变形卷积进一步增强性能。
  • 路径: ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2-Dynamic.yaml

3. 示例代码

以下是一个示例代码,展示如何加载不同配置文件并运行模型:

from ultralytics import YOLO

# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1  # 假设只有一个类别:魔鬼面具

# 加载不同的配置文件并训练模型
def train_model(config_file):
    model = YOLO(config_file)
    results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
    return results

# 使用不同的配置文件进行训练
config_files = [
    'ultralytics/cfg/models/rt-detr/rtdetr-r50-Ortho.yaml',
    'ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2.yaml',
    'ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV3.yaml',
    'ultralytics/cfg/models/rt-detr/rtdetr-r50-DCNV2-Dynamic.yaml'
]

for config in config_files:
    print(f"Training with {config}")
    train_model(config)

4. 数据集准备

确保你的数据集符合dataset.yaml文件的要求。一个典型的dataset.yaml文件如下所示:

train: path/to/train/images
val: path/to/val/images
nc: 1  # 类别数量
names: ['devil_mask']  # 类别名称

5. 运行与评估

在完成训练后,你可以使用以下代码对模型进行评估和测试:

def evaluate_model(model_path, data_path):
    model = YOLO(model_path)
    results = model.val(data=data_path)
    return results

# 评估每个模型
model_paths = [
    'runs/train/exp/weights/best.pt',  # 根据实际路径调整
    'runs/train/exp2/weights/best.pt',
    'runs/train/exp3/weights/best.pt',
    'runs/train/exp4/weights/best.pt'
]

for model_path in model_paths:
    print(f"Evaluating {model_path}")
    evaluate_model(model_path, data_path)

6. 具体配置文件示例

rtdetr-r50-Ortho.yaml
# rtdetr-r50-Ortho.yaml
# 使用OrthoNets中的正交通道注意力机制改进ResNet50-backbone中的Bottleneck

# 模型架构配置
backbone:
  name: 'ResNet50'
  depth: [3, 4, 6, 3]
  width: [64, 128, 256, 512]
  attention: 'OrthoNets'

neck:
  name: 'TransformerDecoderHead'
  num_layers: 6
  num_heads: 8
  d_model: 256

head:
  name: 'RTDETRHead'
  num_classes: 1
  anchors: [[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326]]

# 训练配置
train:
  epochs: 100
  batch_size: 16
  img_size: 640
  workers: 4

通过上述步骤,同学轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。

基于RT-DETR-R18的改进方案,通过替换不同的backbone来优化模型性能。以下是详细的代码示例和说明,展示如何使用不同的YAML配置文件来实现这些改进。

1. 环境准备

确保你已经安装了必要的库,并且配置好了环境:

pip install ultralytics timm

2. 配置文件说明

每个YAML文件对应一种特定的改进方案。以下是部分配置文件的简要说明:

1. rt-detr-timm.yaml
  • 描述: 使用timm库中的主干网络替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-timm.yaml
2. rt-detr-fasternet.yaml
  • 描述: 使用FasterNet CVPR2023替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-fasternet.yaml
3. rt-detr-EfficientViT.yaml
  • 描述: 使用EfficientViT CVPR2023替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-EfficientViT.yaml
4. rt-detr-convnextv2.yaml
  • 描述: 使用ConvNextV2 2023替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-convnextv2.yaml
5. rt-detr-EfficientFormerV2.yaml
  • 描述: 使用EfficientFormerV2 2022替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-EfficientFormerV2.yaml
6. rt-detr-repvit.yaml
  • 描述: 使用RepViT ICCV2023替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-repvit.yaml
7. rt-detr-CSwomTramsformer.yaml
  • 描述: 使用CSwinTransformer CVPR2022替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-CSwomTramsformer.yaml
8. rt-detr-VanillaNet.yaml
  • 描述: 使用VanillaNet替换RT-DETR的backbone。
  • 路径: ultralytics/cfg/models/rt-detr/rt-detr-VanillaNet.yaml

3. 示例代码

示例代码,展示如何加载不同配置文件并运行模型:

from ultralytics import YOLO

# 定义数据集路径和类别数
data_path = 'path/to/your/dataset.yaml'
num_classes = 1  # 假设只有一个类别:魔鬼面具

# 加载不同的配置文件并训练模型
def train_model(config_file):
    model = YOLO(config_file)
    results = model.train(data=data_path, epochs=100, imgsz=640, batch=16, workers=4)
    return results

# 使用不同的配置文件进行训练
config_files = [
    'ultralytics/cfg/models/rt-detr/rt-detr-timm.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-fasternet.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-EfficientViT.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-convnextv2.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-EfficientFormerV2.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-repvit.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-CSwomTramsformer.yaml',
    'ultralytics/cfg/models/rt-detr/rt-detr-VanillaNet.yaml'
]

for config in config_files:
    print(f"Training with {config}")
    train_model(config)

4. 数据集准备

确保你的数据集符合dataset.yaml文件的要求。一个典型的dataset.yaml文件如下所示:

train: path/to/train/images
val: path/to/val/images
nc: 1  # 类别数量
names: ['devil_mask']  # 类别名称

5. 运行与评估

在完成训练后,你可以使用以下代码对模型进行评估和测试:

def evaluate_model(model_path, data_path):
    model = YOLO(model_path)
    results = model.val(data=data_path)
    return results

# 评估每个模型
model_paths = [
    'runs/train/exp/weights/best.pt',  # 根据实际路径调整
    'runs/train/exp2/weights/best.pt',
    'runs/train/exp3/weights/best.pt',
    'runs/train/exp4/weights/best.pt',
    'runs/train/exp5/weights/best.pt',
    'runs/train/exp6/weights/best.pt',
    'runs/train/exp7/weights/best.pt',
    'runs/train/exp8/weights/best.pt'
]

for model_path in model_paths:
    print(f"Evaluating {model_path}")
    evaluate_model(model_path, data_path)

6. 具体配置文件示例

rt-detr-timm.yaml
# rt-detr-timm.yaml
# 使用timm库中的主干网络替换RT-DETR的backbone

# 模型架构配置
backbone:
  name: 'timm'
  model_name: 'resnet18'  # 可以选择其他timm支持的模型

neck:
  name: 'TransformerDecoderHead'
  num_layers: 6
  num_heads: 8
  d_model: 256

head:
  name: 'RTDETRHead'
  num_classes: 1
  anchors: [[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326]]

# 训练配置
train:
  epochs: 100
  batch_size: 16
  img_size: 640
  workers: 4

通过上述步骤,同学轻松地切换不同的配置文件,尝试各种改进方案,并评估它们在“魔鬼面具”目标检测任务上的表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值