棉花叶片病害检测数据集】nc: 6
names: [‘blight’, ‘curl’, ‘grey mildew’,‘healthy’, ‘leaf spot’, ‘wilt’]
名称:【‘枯萎病’, ‘卷叶病’, ‘灰霉菌’,‘萎蔫病’ ,‘叶斑病’, ‘萎蔫病’】共4173张,8:1:1比例划分,(train;3708张,val:232张,test:233张标注文件为YOLO适用的txt格式和xml格式文件。可以直接用于模型训练。
好的,你已经有了一个已经标注好且划分好的棉花叶片病害检测数据集,并且可以直接用于模型训练。我们将使用YOLOv8模型进行训练和评估。以下是详细的步骤和代码示例。
1. 环境准备
首先,确保你已经安装了必要的库和工具。你可以使用以下命令安装所需的库:
pip install torch torchvision
pip install numpy
pip install pandas
pip install matplotlib
pip install opencv-python
pip install pyyaml
pip install ultralytics
2. 数据集准备
假设你的数据集目录结构如下:
cotton_leaf_disease_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── labels/
│ ├── train/
│ ├── val/
│ └── test/
└── cotton_leaf_disease.yaml
每个图像文件和对应的标签文件都以相同的文件名命名,例如 0001.jpg
和 0001.txt
。
3. 创建数据集配置文件
你已经有一个 cotton_leaf_disease.yaml
文件,内容如下:
train: ../cotton_leaf_disease_dataset/images/train
val: ../cotton_leaf_disease_dataset/images/val
test: ../cotton_leaf_disease_dataset/images/test
nc: 6
names: ['blight', 'curl', 'grey_mildew', 'healthy', 'leaf_spot', 'wilt']
4. 安装YOLOv8
克隆YOLOv8仓库并安装依赖项:
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
5. 训练模型
使用YOLOv8的训练脚本进行训练。确保你已经在 cotton_leaf_disease.yaml
中指定了正确的路径。
yolo task=detect mode=train model=yolov8n.yaml data=cotton_leaf_disease.yaml epochs=100 imgsz=640 batch=16
6. 评估模型
训练完成后,可以使用YOLOv8的评估脚本来评估模型在验证集上的性能。
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=cotton_leaf_disease.yaml
7. 可视化预测结果
使用以下Python代码来可视化模型的预测结果。
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/detect/train/weights/best.pt')
# 读取图像
image_path = 'cotton_leaf_disease_dataset/images/val/0001.jpg'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 进行预测
results = model(image)
# 绘制预测结果
results.print()
results.show()
8. 模型优化
为了进一步优化模型,可以尝试以下方法:
- 调整超参数:使用不同的学习率、批量大小、权重衰减等。
- 使用预训练模型:使用预训练的YOLOv8模型作为初始化权重。
- 增加数据量:通过数据增强或收集更多数据来增加训练集的多样性。
- 模型融合:使用多个模型进行集成学习,提高预测的准确性。
9. 代码示例
以下是一个完整的代码示例,展示了如何从头开始训练和评估YOLOv8模型。
训练脚本
# 克隆YOLOv8仓库
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
# 安装依赖项
pip install -e .
# 训练模型
yolo task=detect mode=train model=yolov8n.yaml data=cotton_leaf_disease.yaml epochs=100 imgsz=640 batch=16
评估脚本
# 评估模型
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=cotton_leaf_disease.yaml
可视化脚本
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/detect/train/weights/best.pt')
# 读取图像
image_path = 'cotton_leaf_disease_dataset/images/val/0001.jpg'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 进行预测
results = model(image)
# 绘制预测结果
results.print()
results.show()
10. 总结
通过以上步骤,你可以成功地使用YOLOv8模型对棉花叶片病害检测数据集进行训练、评估和可视化。