如何使用U-Net进行可见光SAR数据集处理 训练 5000对配准好的可见光图像SAR合成孔雷达图像数据集 可见光图像并生成对应的SAR图像 遥感、地理信息系统(GIS)、环境监测 SAR图像数据集

如何训练 5000对配准好的可见光图像SAR合成孔雷达图像数据集 如何用于遥感、地理信息系统(GIS)、环境监测 SAR图像数据集

5000对配准好的可见光图像SAR图像数据集 (尺寸800*800) tif格式 5000对 可见光图像数据集 SAR图像数据集 sar数据集 RGB图像数据集 RGB数据集 遥感地理信息系统环境监测在这里插入图片描述

5000对 配准好的可见光图像 和SAR图像数据集 (尺寸800*800) tif格式 5000对 可见光图像数据集 SAR图像数据集 sar数据集 RGB图像数据集 RGB数据集 在这里插入图片描述
在这里插入图片描述

数据集概述

你提到的数据集包含5000对配准好的可见光图像和SAR(合成孔径雷达)图像,尺寸为800x800,格式为TIFF。这种数据集非常适合用于遥感、地理信息系统(GIS)、环境监测等领域的研究和应用开发。


数据集结构

dataset/
├── visible/          # 可见光图像
│   ├── img1.tif
│   ├── img2.tif
│   └── ...
├── sar/              # SAR图像
│   ├── img1.tif
│   ├── img2.tif
│   └── ...

数据预处理

1. 加载和显示图像
import cv2
import numpy as np
import os

# 加载可见光和SAR图像
def load_images(visible_dir, sar_dir):
    visible_images = []
    sar_images = []

    for filename in os.listdir(visible_dir):
        if filename.endswith(".tif"):
            visible_path = os.path.join(visible_dir, filename)
            sar_path = os.path.join(sar_dir, filename)

            visible_img = cv2.imread(visible_path, cv2.IMREAD_COLOR)
            sar_img = cv2.imread(sar_path, cv2.IMREAD_GRAYSCALE)

            visible_images.append(visible_img)
            sar_images.append(sar_img)

    return np.array(visible_images), np.array(sar_images)

visible_dir = "dataset/visible"
sar_dir = "dataset/sar"

visible_data, sar_data = load_images(visible_dir, sar_dir)

print("Visible Images Shape:", visible_data.shape)
print("SAR Images Shape:", sar_data.shape)
2. 图像归一化
def normalize_images(images):
    normalized = images.astype('float32') / 255.0
    return normalized

visible_data_norm = normalize_images(visible_data)
sar_data_norm = normalize_images(sar_data)
3. 数据划分
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    visible_data_norm, sar_data_norm, test_size=0.2, random_state=42
)

print("Train Visible Shape:", X_train.shape)
print("Test SAR Shape:", y_test.shape)

模型构建与训练

使用U-Net进行可见光到SAR图像转换
import tensorflow as tf
from tensorflow.keras import layers, models

def unet_model(input_shape):
    inputs = layers.Input(shape=input_shape)

    # 编码器
    conv1 = layers.Conv2D(64, 3, activation='relu', padding='same')(inputs)
    conv1 = layers.Conv2D(64, 3, activation='relu', padding='same')(conv1)
    pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = layers.Conv2D(128, 3, activation='relu', padding='same')(pool1)
    conv2 = layers.Conv2D(128, 3, activation='relu', padding='same')(conv2)
    pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)

    # 中间层
    conv3 = layers.Conv2D(256, 3, activation='relu', padding='same')(pool2)
    conv3 = layers.Conv2D(256, 3, activation='relu', padding='same')(conv3)

    # 解码器
    up4 = layers.Conv2DTranspose(128, 2, strides=(2, 2), padding='same')(conv3)
    merge4 = layers.concatenate([up4, conv2], axis=3)
    conv4 = layers.Conv2D(128, 3, activation='relu', padding='same')(merge4)
    conv4 = layers.Conv2D(128, 3, activation='relu', padding='same')(conv4)

    up5 = layers.Conv2DTranspose(64, 2, strides=(2, 2), padding='same')(conv4)
    merge5 = layers.concatenate([up5, conv1], axis=3)
    conv5 = layers.Conv2D(64, 3, activation='relu', padding='same')(merge5)
    conv5 = layers.Conv2D(64, 3, activation='relu', padding='same')(conv5)

    outputs = layers.Conv2D(1, 1, activation='sigmoid')(conv5)

    model = models.Model(inputs=[inputs], outputs=[outputs])
    return model

input_shape = (800, 800, 3)  # 输入是RGB可见光图像
model = unet_model(input_shape)

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
训练模型
history = model.fit(X_train, y_train, 
                    validation_data=(X_test, y_test),
                    epochs=50,
                    batch_size=8)

model.save("visible_to_sar_unet.h5")

模型评估与可视化

import matplotlib.pyplot as plt

# 可视化损失曲线
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.legend()
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

# 预测测试集
preds = model.predict(X_test)

# 显示原始SAR图像与预测结果
for i in range(5):
    plt.figure(figsize=(10, 5))
    
    plt.subplot(1, 3, 1)
    plt.title("Visible Input")
    plt.imshow(X_test[i])
    
    plt.subplot(1, 3, 2)
    plt.title("True SAR Image")
    plt.imshow(y_test[i], cmap='gray')
    
    plt.subplot(1, 3, 3)
    plt.title("Predicted SAR Image")
    plt.imshow(preds[i].squeeze(), cmap='gray')
    
    plt.show()

总结

如何使用深度学习模型(如U-Net)来处理可见光图像并生成对应的SAR图像。

以上文字及代码仅供参考。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值