深度学习Yolov8训练电线杆输电线电塔电线缺陷数据集 训练好的电线杆电线缺陷权重 建立基于深度学习Yolov8电塔电线缺陷检测系统 检测绑扎不规范‘, ‘并线线夹保护壳缺失‘, ‘耐张线夹保护壳

深度学习Yolov8训练电线杆输电线电塔电线缺陷数据集 训练好的电线杆电线缺陷权重 建立基于深度学习Yolov8电塔电线缺陷检测系统 检测绑扎不规范’, ‘并线线夹保护壳缺失’, '耐张线夹保护壳等


以下文字及代码仅供参考。
同学,首先具备相关标注好的数据集,然后配置好yaml,咱们就开始吧

电塔电线缺陷检测数据集9838张 5类
在这里插入图片描述

电塔电线缺陷检测YOLO数据集

缺陷类型图片数量标注框数量训练集图片数(约80%)验证集图片数(约20%)
绑扎不规范3717145102974743
并线线夹保护壳缺失3317112852654663
耐张线夹保护壳缺失3748161482998750
横杆腐蚀9871556790197
塔头损坏9721021778194
总计98384452010194 (约80%)2444 (约20%)

在这里插入图片描述

要使用YOLOv8训练电塔电线缺陷检测模型,并根据训练好的权重建立深度学习电塔电线缺陷检测系统,同学以遵循以下步骤:
在这里插入图片描述

1. 环境准备

首先,确保你的环境中安装了所有必要的依赖库。对于YOLOv8,你可以这样安装:

pip install ultralytics

需要其他库如opencv-python等进行图像处理和结果展示。

在这里插入图片描述

2. 数据集划分与组织

同学,数据集的划分(训练集7870张,验证集1968张),你需要将这些数据按照YOLO格式组织好。这通常包括创建一个包含所有图像文件夹和对应标注文件(.txt)的结构,以及一个或多个.yaml配置文件来描述数据集的位置和类别信息。

创建目录结构
  • dataset/
    • images/
      • train/
      • val/
    • labels/
      • train/
      • val/
准备.yaml配置文件

创建一个data.yaml文件,内容如下:

train: ./dataset/images/train/
val: ./dataset/images/val/

nc: 5  # 类别数量
names: ['绑扎不规范', '并线线夹保护壳缺失', '耐张线夹保护壳缺失', '横杆腐蚀', '塔头损坏']  # 类别名称

3. 开始训练

同学,加载数据集并开始训练YOLOv8模型:

from ultralytics import YOLO

# 加载预训练的YOLOv8模型或从头开始训练
model = YOLO('yolov8n.yaml')  # 使用YOLOv8 nano架构作为示例

# 开始训练
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640)  # 调整参数以适应你的需求

这里epochsimgsz可以根据实际情况调整。imgsz指定了输入网络的图像尺寸,而epochs则是训练周期数。

4. 模型评估与推理

训练完成后,可以对模型进行评估,并使用它进行推理:

评估模型
metrics = model.val()  # 在验证集上评估模型性能
进行推理
# 对单张图片进行推理
results = model.predict(source='path/to/test_image.jpg', save=True, conf=0.5)

# 或者对整个目录进行批量推理
results = model.predict(source='path/to/test_dir/', save=True, conf=0.5)

以下是关于如何搭建环境、配置数据、训练模型、调整超参数、进行模型推理(包括批量推理)、性能评估的详细步骤和代码示例。YOLOv8作为我们的深度学习框架。

环境搭建

首先,确保你的Python环境中安装了必要的库:

pip install ultralytics opencv-python-headless

数据配置

假设你已经有了一个按照YOLO格式组织的数据集,包含图像和对应的标签文件。创建一个data.yaml文件来描述你的数据集路径和类别信息:

train: ./dataset/images/train/
val: ./dataset/images/val/

nc: 5  # 类别数量
names: ['绑扎不规范', '并线线夹保护壳缺失', '耐张线夹保护壳缺失', '横杆腐蚀', '塔头损坏']  # 类别名称

模型训练

加载YOLOv8模型并开始训练:

from ultralytics import YOLO

# 加载预训练的YOLOv8模型或从头开始训练
model = YOLO('yolov8n.yaml')  # 使用YOLOv8 nano架构作为示例

# 开始训练
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16)

在这个例子中,我们设置了epochs为100,输入图像尺寸imgsz为640,以及批次大小batch为16。你可以根据硬件资源调整这些参数。

配置超参数

在调用model.train()时,可以通过传递额外的参数来调整超参数,例如学习率(lr0)、动量(momentum)等。更多选项可以参考官方文档

模型推理

单张图片推理
# 对单张图片进行推理
results = model.predict(source='path/to/test_image.jpg', save=True, conf=0.25)

for result in results:
    print(result.boxes)  # 输出检测框信息
批量推理

对整个目录进行批量推理:

# 对整个目录进行批量推理
results = model.predict(source='path/to/test_dir/', save=True, conf=0.25)

性能评估

在验证集上评估模型性能:

metrics = model.val()  # 在验证集上评估模型性能
print(metrics.box.map)  # 输出mAP值

在这里插入图片描述

完整代码示例

以下是一个完整的代码示例,包括环境搭建、数据配置、模型训练、超参数配置、模型推理及性能评估:

from ultralytics import YOLO
import os

# 确保已安装必要库
# pip install ultralytics opencv-python-headless

# 加载YOLOv8模型
model = YOLO('yolov8n.yaml')

# 训练模型
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16)

# 调整超参数示例
# 更多超参数可查阅官方文档
# results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16, lr0=0.01, momentum=0.937)

# 单张图片推理
result = model.predict(source='path/to/test_image.jpg', save=True, conf=0.25)

# 批量推理
results = model.predict(source='path/to/test_dir/', save=True, conf=0.25)

# 性能评估
metrics = model.val()
print(f"Model mAP: {metrics.box.map}")

同学,路径要正确,要不然出现问题啦,报错啦

替换path/to/data.yamlpath/to/test_image.jpgpath/to/test_dir/为你实际的文件路径。通过上述步骤,你应该能够成功地搭建环境、训练模型、进行推理,并评估其性能。

仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值