医学类数据集的训练应用 yolov8如何训练舌象舌头舌苔检测数据集,依据训练的舌苔数据集权重,推理,建立基于深度学习舌苔检测系统

医学类数据集的训练应用 yolov8如何训练舌象舌头舌苔检测数据集,依据训练的舌苔数据集权重,推理,建立基于深度学习舌苔检测系统


以下文字及代码仅供参考。

医学类数据集 舌象舌头舌苔检测数据集
在这里插入图片描述
1
在这里插入图片描述

舌象检测 YOLO 数据集统计表(共 5 类)在这里插入图片描述

类别名称图片数量标注框数量训练集图片数(约80%)验证集图片数(约20%)
Mirror-Approximated1121129022
White-Greasy691691553138
Thin-White532532426106
Yellow-Greasy85856817
Grey-Black52524012
总计147214721177 (80%)295 (20%)

数据说明:

  • 数据集总图片数:1472 张
  • 总标注框数:1472 个(每张图一个标注框)
  • 按照 8:2 的比例划分为训练集和验证集
  • 所有类别的标注框数量与图片数量一致(即每张图片仅包含一个舌象对象)

使用YOLOv8训练你的舌苔检测数据集,并基于训练好的权重建立一个深度学习舌苔检测系统,同学需要按照以下步骤进行操作。从准备环境、组织数据、编写训练代码到推理过程进行详细介绍。

示例代码哦

准备环境

首先确保安装了必要的依赖库:

pip install ultralytics opencv-python-headless matplotlib

组织数据

确保你的数据集已经按照YOLO格式组织好,即包含图像和相应的标注文件(.txt),这些标注文件应该位于与图像相同的目录下,并且命名相同但扩展名为.txt。每个标注文件应包括类别ID和边界框坐标(中心x, 中心y, 宽度, 高度),所有值均归一化。

创建YOLO配置文件

创建一个data.yaml文件,用于描述数据集的路径和类别信息。例如:

train: /path/to/train/images
val: /path/to/val/images

nc: 5  # 类别数量
names: ['Mirror-Approximated', 'White-Greasy', 'Thin-White', 'Yellow-Greasy', 'Grey-Black']

编写训练代码

下面是一个简单的Python脚本,用于加载数据集并开始训练:

from ultralytics import YOLO

# 加载预训练模型或随机初始化
model = YOLO('yolov8n.yaml')  # 使用YOLOv8 nano架构作为示例,可以根据需要调整

# 开始训练
results = model.train(data='/path/to/data.yaml', epochs=100, imgsz=640, batch=16)

# 训练完成后保存最佳权重
best_weights_path = model.save('/path/to/save/best.pt')
print(f"Best weights saved to {best_weights_path}")

推理与部署

完成训练后,你可以使用训练得到的最佳权重对新的图像进行预测。以下是进行推理的一个简单例子:

from ultralytics import YOLO
import cv2

def detect_image(image_path):
    # 加载训练好的模型权重
    model = YOLO('/path/to/save/best.pt')
    
    # 对新图片进行预测
    results = model.predict(source=image_path, save=True, conf=0.25)
    
    for result in results:
        img = cv2.imread(image_path)
        for box in result.boxes:
            x1, y1, x2, y2 = [int(x) for x in box.xyxy]
            cls = int(box.cls.item())
            label = f'{result.names[cls]} {box.conf.item():.2f}'
            cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        
        cv2.imshow('Detected Image', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

detect_image('path/to/test_image.png')  # 替换为你要测试的图片路径

如何进行性能评估?

性能评估是任何深度学习系统的重要组成部分,对于医疗应用如舌苔检测系统。通过性能评估,模型的准确性、召回率、精确度等关键指标,并根据这些信息进行优化。基于YOLOv8的舌苔检测系统进行性能评估的步骤和方法。

1. 准备验证集

确保图像同学已经按照8:2的比例划分了训练集和验证集。验证集用于在训练过程中以及训练完成后评估模型的性能。验证集应尽可能反映实际应用场景中的数据分布。

2. 使用验证集评估模型

使用YOLOv8提供的内置函数来评估模型在验证集上的表现。这可以通过调用model.val()函数完成。

from ultralytics import YOLO

# 加载训练好的模型权重
model = YOLO('/path/to/save/best.pt')

# 在验证集上评估模型性能
metrics = model.val()

# 打印评估结果
print(f"Model mAP: {metrics.box.map}")  # 输出mAP值
print(f"Model mAP@0.5: {metrics.box.map50}")  # 输出mAP@0.5值
print(f"Model mAP@0.5:0.95: {metrics.box.map}")  # 输出mAP@0.5:0.95值

这里metrics.box.map代表平均精度均值(mean Average Precision, mAP),是衡量目标检测模型整体性能的一个重要指标。map50表示IoU阈值为0.5时的mAP,而map通常指的是IoU从0.5到0.95之间的平均mAP。

3. 分类报告

同学如果需要更详细的分类性能分析,可以生成一个分类报告,显示每个类别的精确度、召回率、F1分数等:

from sklearn.metrics import classification_report

# 假设y_true和y_pred分别是真实标签和预测标签列表
# 注意:你需要将YOLO输出转换成适合classification_report格式的数据
print(classification_report(y_true, y_pred, target_names=['Mirror-Approximated', 'White-Greasy', 'Thin-White', 'Yellow-Greasy', 'Grey-Black']))

请注意,YOLO输出的是边界框及其对应的类别,直接获取每个图像的分类标签可能需要额外的处理步骤,例如根据置信度最高的预测框确定每个图像的类别。是的

4. 可视化混淆矩阵

混淆矩阵是一个强大的工具,可以帮助理解模型在不同类别上的表现。你可以使用matplotlib或seaborn库来绘制混淆矩阵:

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix

# 计算混淆矩阵
cm = confusion_matrix(y_true, y_pred)

# 绘制混淆矩阵
plt.figure(figsize=(10, 7))
sns.heatmap(cm, annot=True, fmt='d', xticklabels=['Mirror-Approximated', 'White-Greasy', 'Thin-White', 'Yellow-Greasy', 'Grey-Black'], yticklabels=['Mirror-Approximated', 'White-Greasy', 'Thin-White', 'Yellow-Greasy', 'Grey-Black'])
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()

仅供参考学习,同学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值