铁路输电线路异物检测数据集,共6GB,14000余图像,40000+标注,标注鸟巢,塑料袋,气球,漂浮物四大类。coco格式标注
- :铁路输电线路异物检测数据集
- 规模:共6GB,14,000余张图像,超过40,000个标注
- 检测要素:鸟巢、塑料袋、气球、漂浮物四大类
- 标注格式:COCO格式标注
数据集特点
- 高清影像:所有图像均为高清影像,适合用于精确的目标检测。
- 详细标注:每张图像都标注了鸟巢、塑料袋、气球、漂浮物的位置,可以用于训练模型来识别这些异物。
- 多样性:涵盖不同时间、天气条件下的真实铁路输电线路场景,适用于多种环境下的应用。
- 广泛适用性:支持多种深度学习框架,适用于目标检测及定位任务。
数据集统计
目标类别 | 图像张数 | 标注数量 |
---|---|---|
鸟巢 | ||
塑料袋 | ||
气球 | ||
漂浮物 | ||
总计 | 14,000+ | 40,000+ |
数据集结构
RailwayPowerLineObstaclesDetectionDataset/
├── images/ # 图像文件
│ ├── train2017/ # COCO标准命名
│ │ ├── image_00001.jpg
│ │ ├── image_00002.jpg
│ │ └── ...
│ ├── val2017/ # COCO标准命名
│ │ ├── image_00001.jpg
│ │ ├── image_00002.jpg
│ │ └── ...
│ └── test2017/ # COCO标准命名
│ ├── image_00001.jpg
│ ├── image_00002.jpg
│ └── ...
├── annotations/ # COCO格式标注文件
│ ├