铁路铁轨轨道异物检测数据集旨在通过深度学习技术检测铁路轨道上的异物,以提高铁路运输的安全性。该数据集包含1861张图像,标注格式为VOC和YOLO。数据集类别包括五种不同的异物类型:person、obstacle_oc、animal、vehicle、motor_bicycle、train。这些异物是通过合成技术(p图)添加到图像中的,以模拟实际场景中的各种情况。
研究意义
提高铁路安全性:通过实时检测轨道上的异物,可以及时采取措施避免事故发生,保障铁路运输的安全。
减少人为干预:自动化检测系统可以减少对人工巡查的依赖,提高检测效率和准确性。
推动智能交通发展:利用深度学习和计算机视觉技术,推动智能交通系统的发展,为铁路行业的技术创新提供数据支持。
数据集结构
深色版本
railway_obstacle_detection_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── val/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── test/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
├── labels/
│ ├── train/
│ │ ├── 000001.xml
│ │ ├── 000002.xml
│ │ └── …
│ ├── val/
│ │ ├── 000001.xml
│ │ ├── 000002.xml
│ │ └── …
│ ├── test/
│ │ ├── 000001.xml
│ │ ├── 000002.xml
│ │ └── …
├── labels_yolo/
│ ├── train/
│ │ ├── 000001.txt
│ │ ├── 000002.txt
│ │ └── …
│ ├── val/
│ │ ├── 000001.txt
│ │ ├── 000002.txt
│ │ └── …
│ ├── test/
│ │ ├── 000001.txt
│ │ ├── 000002.txt
│ │ └── …
├── classes.txt
├── README.txt
├── models/
│ └── yolov5/
├── src/
│ ├── train_yolov5.py
│ ├── predict_yolov5.py
│ ├── utils.py
│ ├── dataset.py
├── weights/
│ └── best_model.pt
├── requirements.txt
└── README.md
数据说明
数据集规模:共包含1861张图像,已分为训练集、验证集和测试集。
图像格式:JPG
标注格式:VOC格式(XML)和YOLO格式(TXT)
类别:5类(person、obstacle_oc、animal、vehicle、motor_bicycle、train)
- 安装依赖
首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:
深色版本
torch
torchvision
numpy
pandas
matplotlib
tqdm
pyyaml
opencv-python
yolov5
然后,使用以下命令安装依赖:
bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:
深色版本
railway_obstacle_detection_dataset/
├── images/
│ ├── train/