XTU OJ 逆序数(大数据)---豆包辅助解答

知识点:归并排序法

C语言最终代码

#include <stdio.h>

#define MAXN 10001
// 合并两个有序数组并统计逆序数
int merge(int arr[], int temp[], int left, int mid, int right) {
    int i = left;
    int j = mid + 1;
    int k = left;
    int inversion_count = 0;

    while (i <= mid && j <= right) {
        if (arr[i] <= arr[j]) {
            temp[k++] = arr[i++];
        } else {
            temp[k++] = arr[j++];
            // 当arr[i] > arr[j]时,arr[i...mid]都与arr[j]构成逆序对
            inversion_count += (mid - i + 1); 
        }
    }

    while (i <= mid) {
        temp[k++] = arr[i++];
    }

    while (j <= right) {
        temp[k++] = arr[j++];
    }

    for (i = left; i <= right; i++) {
        arr[i] = temp[i];
    }

    return inversion_count;
}

// 归并排序主函数并统计逆序数
int mergeSort(int arr[], int temp[], int left, int right) {
    int inversion_count = 0;
    if (left < right) {
        int mid = (left + right) / 2;

        // 递归计算左子数组逆序数
        inversion_count += mergeSort(arr, temp, left, mid);
        // 递归计算右子数组逆序数
        inversion_count += mergeSort(arr, temp, mid + 1, right);

        // 合并两个子数组并统计逆序数
        inversion_count += merge(arr, temp, left, mid, right);
    }
    return inversion_count;
}

int main() {
    int arr[MAXN];
    int temp[MAXN];
    int n;
    while (1) {
        scanf("%d", &n);
        if (n == 0) break;
        for (int i = 0; i < n; i++) {
            scanf("%d", &arr[i]);
        }
        int inversion_count = mergeSort(arr, temp, 0, n - 1);
        printf("%d\n", inversion_count);
    }
    return 0;
}

代码说明:

  1. merge 函数:负责合并两个有序子数组,在合并过程中统计逆序数。当左子数组元素大于右子数组元素时,左子数组该元素及后面剩余元素都与右子数组当前元素构成逆序对,据此统计逆序数。合并完成后将结果复制回原数组。
  2. mergeSort 函数:递归地对数组进行分治,先分别计算左右子数组的逆序数,再通过调用 merge 函数合并子数组并统计合并过程中的逆序数,最终返回整个数组的逆序数。
  3. main 函数:循环读取序列长度 n 和序列元素,调用 mergeSort 函数计算逆序数并输出,当 n 为 0 时结束程序。

初始的暴力求解

#include<stdio.h>
int arr[10001]={0};
int main()
{
	int n,i,cnt,j,max;
	while(1)
	{
		cnt=0;
		scanf("%d",&n);
		if(n==0) break;
		scanf("%d",&arr[1]);
		max=arr[1];
		for(i=2;i<=n;i++)
		{
			scanf("%d",&arr[i]);
//			printf("%d-----------%d\n",i,max);
			if(arr[i]>=max) {max=arr[i];continue;}
			for(j=i-1;j>0;j--)
			{
				if(arr[i]<arr[j]) cnt++;
			}
		}
//		for(i=1;i<=n;i++)
//		{
//			printf("%d----%d\n",i,arr[i]);
//		}
		printf("%d\n",cnt);
	}
 	return 0;
}

时间复杂度为 O(n2) ,当 n 达到题目允许的最大值 10000 时,计算量会非常大。在 1 秒的时间限制下,很可能超时,难以满足时间限制条件 。

相比之下,归并排序法时间复杂度为 O(nlogn) ,更有机会满足该时间限制要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值