小论文速成秘诀!多模态持续学习创新方案整理

2024深度学习发论文&模型涨点之——多模态持续学习

多模态持续学习(Multimodal Continual Learning, MMCL)是一个活跃且前景广阔的研究领域,它结合了多模态数据处理技术和持续学习的能力,以使机器学习模型能够不断从新数据中学习,同时保留对已有知识的记忆力。

持续学习(Continual Learning, CL)旨在使机器学习模型能够从新数据中不断学习,同时在不遗忘已获得知识的基础上进行扩展。

多模态持续学习(MMCL)超越了简单的单模态持续学习方法,因为它需要处理来自不同模态的数据流,并在连续学习中保留以前获得的知识。

我整理了一些多模态持续学习【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。

论文精选

论文1:

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

无需卷积或区域监督的视觉和语言变换器

方法

视觉和语言预训练(VLP):提出了一种新的VLP模型,ViLT,它简化了视觉输入的处理,仅使用与处理文本输入相同的无卷积方式。

线性嵌入:使用简单的线性投影来嵌入像素级输入,替代了复杂的区域特征或网格特征提取。

单流方法:采用单流方法进行模态交互,即将图像和文本输入合并后一起处理,而不是分开处理。

视觉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值