2024深度学习发论文&模型涨点之——多模态持续学习
多模态持续学习(Multimodal Continual Learning, MMCL)是一个活跃且前景广阔的研究领域,它结合了多模态数据处理技术和持续学习的能力,以使机器学习模型能够不断从新数据中学习,同时保留对已有知识的记忆力。
持续学习(Continual Learning, CL)旨在使机器学习模型能够从新数据中不断学习,同时在不遗忘已获得知识的基础上进行扩展。
多模态持续学习(MMCL)超越了简单的单模态持续学习方法,因为它需要处理来自不同模态的数据流,并在连续学习中保留以前获得的知识。
我整理了一些多模态持续学习【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。
论文精选
论文1:
ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision
无需卷积或区域监督的视觉和语言变换器
方法
视觉和语言预训练(VLP):提出了一种新的VLP模型,ViLT,它简化了视觉输入的处理,仅使用与处理文本输入相同的无卷积方式。
线性嵌入:使用简单的线性投影来嵌入像素级输入,替代了复杂的区域特征或网格特征提取。
单流方法:采用单流方法进行模态交互,即将图像和文本输入合并后一起处理,而不是分开处理。
视觉