2025.4.25

网络安全技术学习笔记

一、渗透测试靶场与工具

1. DVWA 靶场

  • 简介:Damn Vulnerable Web Application(DVWA)是一个用于学习网络安全和渗透测试的故意设计有漏洞的 Web 应用程序。
  • 用途:提供 SQL 注入、命令注入、文件上传、CSRF 等多种漏洞场景,帮助学习者实践漏洞发现、利用及修复方法 。

2. Burp Suite

  • 中间人处理功能:作为中间人代理,可拦截、修改、重放浏览器与服务器之间的 HTTP/HTTPS 请求和响应,用于发现和利用 Web 应用程序漏洞,如参数篡改、敏感信息窃取等。
  • 其他功能:集成扫描器、爬虫、爆破模块等,实现自动化漏洞检测和攻击测试。

二、网络攻击技术

1. 分布式拒绝服务攻击(DDoS)

  • 原理:通过控制大量傀儡主机(僵尸网络),向目标服务器发送海量无效请求,耗尽其资源,导致正常用户无法访问服务。
  • 类型:带宽消耗型(如 UDP 洪水攻击)、协议消耗型(如 SYN 洪水攻击)、应用层攻击(如 Slowloris 攻击)。

2. ARP 攻击

  • ARP 协议:地址解析协议,用于将 IP 地址映射到 MAC 地址。
  • 攻击方式:ARP 欺骗(伪造 ARP 响应包,修改目标主机或网关 ARP 缓存表,实现中间人攻击或断网)、ARP 洪水(发送大量虚假 ARP 请求,造成网络瘫痪)。

三、系统安全威胁

1. 授权与病毒

  • 授权问题:包括权限滥用、未授权访问、弱密码导致的非法登录等,可通过权限最小化、多因素认证等方式防范。
  • 病毒:恶意程序,可自我复制、传播,破坏系统数据,如感染型病毒、宏病毒等,需依靠杀毒软件和安全意识防范。

2. SSH 爆破

  • 原理:使用字典或暴力猜测方式,尝试破解 SSH 服务的用户名和密码,获取服务器控制权。
  • 防范:修改默认端口、禁用 root 直接登录、启用密钥认证、限制登录尝试次数。

3. 勒索病毒

  • 类型
    • 加密型勒索病毒:如 Crysis、Dharma、GandCrab,加密用户文件,要求支付赎金获取解密密钥。
    • 锁机型勒索病毒:锁定用户计算机屏幕,强制用户支付赎金解锁。
  • 传播途径:邮件附件、恶意下载链接、漏洞利用(如永恒之蓝)。

4. 蠕虫病毒

  • 特点:无需用户干预,可自动通过网络传播,利用系统漏洞进行复制和扩散,如 “震荡波”“红色代码”。

5. 永恒之蓝

  • 漏洞编号:CVE-2017-0143 等。
  • 原理:利用 Windows 系统 SMB 服务漏洞,无需用户交互即可远程执行代码,勒索病毒 WannaCry 就利用此漏洞大规模传播。

四、Web 安全漏洞与后门

1. WebShell

  • 定义:通过 Web 漏洞上传到服务器的恶意脚本文件,如 ASP、PHP、JSP 后门,可实现对服务器的远程控制,如文件管理、命令执行。
  • 用途:攻击者用于维持对目标网站的持续访问权限。

2. SRC 漏洞与价值

  • SRC(Security Response Center):安全应急响应中心,企业或平台接收外部安全研究人员提交的漏洞报告。
  • 价值:高风险漏洞(如 0day 漏洞、远程代码执行漏洞)可能获得高额奖励,同时有助于提升企业安全性和研究人员技术声誉。

### 2025年1月5日的大数据平台技术趋势与发展 #### 数据量持续增长带来的挑战与机遇 随着国家大数据战略的推进,至2025年初,中国大数据产业规模预计将超过3万亿元人民币,相较于之前几年保持着约25%的年均复合增长率[^2]。这一时期的数据类型更加多样化,尤其是来自物联网设备产生的实时流式数据占比显著提高。 #### 构建现代化大数据生态系统 为了应对海量数据处理需求,在架构层面会更加强调分布式计算框架的应用,如Apache Flink、Spark Streaming等近实时处理引擎将得到广泛应用;同时,围绕着Kubernetes为核心的容器编排工具也将进一步简化集群管理和资源调度工作流程。此外,Serverless无服务器架构模式有望成为主流选择之一,它允许开发者专注于业务逻辑开发而无需关心底层基础设施运维细节[^4]。 #### 加强安全性和隐私保护机制建设 鉴于近年来频发的数据泄露事件以及日益严格的法律法规监管环境,《金融科技(FinTech)发展规划(2022—2025年)》强调了通过采用先进的加密算法和技术手段来保障敏感信息安全的重要性。因此,在未来一段时间里,零信任网络访问(ZTNA)、同态加密(Homomorphic Encryption)等相关技术和理念会被更多地引入到实际项目当中去。 #### 推动智能化转型进程加速 借助于机器学习和深度神经网络的强大功能,预测分析、自然语言处理(NLP)等领域将迎来快速发展阶段。金融机构可以利用这些先进技术构建更为精确的风险评估模型和服务推荐系统,从而更好地服务于客户并降低运营成本。与此同时,自动化运维(AIOps)也将在维护大型数据中心稳定运行方面发挥重要作用。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from keras.models import Sequential from keras.layers import Dense, Dropout # 假设我们有一个用于训练的人工智能风控模型 data = pd.read_csv('financial_data.csv') X = data.drop(columns=['target']) y = data['target'] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split( X_scaled, y, test_size=0.2, random_state=42) model = Sequential([ Dense(64, activation='relu', input_shape=(X.shape[1],)), Dropout(0.5), Dense(32, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_split=0.2) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值