利用AI驱动的分析提升您的客服中心表现

利用AI驱动的分析提升您的客服中心表现

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon Connect, Customer Experience, Contact Center, Generative Ai, Data Insights, Quality Assurance]

导读

人工智能(AI)正在揭示关于联络中心绩效的更深层洞察,包括客户情绪、座席表现和人力资源调度。参加本次会议,了解联络中心经理如何利用Amazon Connect中的AI驱动分析,主动识别并采取行动,改善客户服务成果。学习Toyota如何利用分析来检测新兴主题,并为企业各级领导提供有价值的见解。

演讲精华

以下是小编为您整理的本次演讲的精华。

演讲开始时,亚马逊Connect产品管理总监Kevin Malm感谢与会者在拉斯维加斯早上8:30就到场。他承认与Swami的主题演讲时间有所重叠,但鉴于现场观众的水平,他保证大家会有一个精彩的体验。

Kevin介绍了自己,并分享了他在亚马逊Connect的8年经历。他回忆起当初只是一个小团队的独立产品经理,但怀着雄心壮志,相信他们能创造出非凡的东西。多年来,团队规模不断扩大,亚马逊Connect也成为了亚马逊云科技历史上增长最快的服务之一,这是Kevin感到幸运的一部分。

与Kevin同台的还有Alex、Bradley和Mitch,他们将分别介绍演讲的不同部分。Kevin简要概述了议程,提到他将讨论联系中心的数据问题,并分享亚马逊未来的路线图和战略。他表示Alex和来自丰田的代表将带来更吸引人的内容,包括演示和真实案例研究。

为了了解观众对亚马逊Connect的熟悉程度,Kevin请了解该服务的人举手。看到大量举手,他对该服务日益受到关注感到兴奋,这与早期参会者主要是不了解联系中心概念的软件工程师形成鲜明对比。

Kevin接着讨论了一个更贴切的话题,询问观众是否曾因糟糕的客户体验而决定远离某家公司。他分享了一位同事在前往拉斯维加斯参加活动时行李遗失的趣事,只能用20美元的津贴购买新衣服。

从这个例子出发,Kevin强调,即使问题不在公司本身,客户也往往会因糟糕的体验而离开。他引用了亚马逊的一条原则:“这可能不是我们的错,但这是我们的问题。”无论情况如何,负面体验的感知都会对公司造成不利影响。

Kevin承认观众都了解客户对公司的高期望,要求个性化体验和全面了解他们的需求和历史。他引用了Jeff Bezos的一句名言:“客户永远美好地不满足。”即使客户表示满意,Kevin解释道,他们也总是渴望更多功能和改进,这是他整个职业生涯中遇到的情况。

回顾亚马逊的历史,Kevin分享说,公司对当时可用的联系中心技术不满意,决定构建自己的内部解决方案来满足规模、复杂性和质量标准。大约15年前,亚马逊开发了一种内部技术,后来对外开放,成为亚马逊Connect的基础。

Kevin强调了亚马逊Connect的关键区别,即只需几次点击就能设置一个完全配置的联系中心。在COVID-19疫情期间,一些基础设施失效的公共部门客户能够在几天内快速部署亚马逊Connect,以处理与疫苗接种阶段和失业救济相关的大量来电。

Kevin提到的另一个区别是配置简单,减少了开发负担。亚马逊Connect旨在让企业将重点放在提供卓越的客户体验上,而不是耗费大量时间和精力进行技术配置。

人工智能(AI)一直是亚马逊Connect的核心,最初推出时就具备了通过亚马逊Lex语音聊天机器人创建自助服务体验的能力。每一次新功能发布都以某种方式融入了AI。

Kevin承认,亚马逊Connect的AI能力与生成式AI的兴起时机非常幸运,这降低了AI的入门门槛,使更多人能够接触到AI。他分享了一个趣闻,早期的亚马逊Connect客户会手动将通话记录从亚马逊简单存储服务(S3)存储桶移动到其他亚马逊云科技服务(如Transcribe和Comprehend)以获取文字记录、主题建模和情感分析。这促使开发了Contact Lens,只需几次点击就能在亚马逊Connect内提供这些功能,从而简化了流程。

Contact Lens后来发展出更先进的功能,如自动联系分类、绩效管理以及创建触发警报规则的能力。Kevin强调,亚马逊的理念是让AI功能在联系中心环境中易于访问和利用。

Kevin随后概述了亚马逊Connect在2024年re:Invent大会上的最新发布,重点关注生成式AI及其在联系中心的应用。他强调了主动客户服务功能,使企业能够主动联系客户,以及预测和排班功能,帮助优化员工工作量。

Kevin介绍了“虚拟循环”的概念,亚马逊Connect会生成见解、检测异常、提供建议,并最终根据业务目标优化联系中心。他对未来联系中心能够根据预定义目标自动优化自身的可能性表示兴奏。

在这一点上,Kevin邀请Alex上台演示亚马逊Connect的分析套件,包括Contact Lens、基于生成式AI的见解和可定制的仪表板。

Alex首先介绍了虚构公司“任何公司零售”和三个角色:Jane是商业分析师;Carlos和Shirley是质量保证分析师。演示展示了这些角色如何利用亚马逊Connect的分析功能来识别新兴趋势、自动分类联系和评估、促进有针对性的质量保证和数据驱动的指导。

商业分析师Jane首先运行了一份关于Contact Lens分析的联系的双周报告。然后,她使用主题检测生成报告,发现之前未知或新兴的联系主题。Jane注意到有相当一部分联系与产品退货有关,于是决定更密切地跟踪这些电话,并创建一条规则自动将与不满意客户退货相关的联系分类。

通过自动联系分类,Jane可以比较产品退货电话的绩效指标(如处理时间、客户满意度评分和解决率)与其他联系类型。她创建了一个分析仪表板,发现不同呼叫驱动因素的趋势和模式,发现产品退货是最高量类别。

有了这些见解,Jane决定进一步调查并与质量保证团队(由Carlos代表)分享她的发现。

质量保证分析师Carlos创建了一个评估表格,可以根据Contact Lens规则自动填写并提交高达100%与产品退货相关的联系的评估。如果自动评估结果显示代理人未检查退货产品的状况,系统会自动向质量保证团队分配一个任务,以进行人工重新评估。

Carlos在联系控制面板中收到任务通知,可以访问联系记录,包括联系后总结、通话记录、文字记录和评估表格。他选择了一个新的评估表格,该表格利用生成式AI为代理人绩效评估提供建议和背景。

AI驱动的评估会以证据和参考点补充答案,这些证据和参考点来自文字记录,使Carlos能够更准确、高效地进行评估。如果重新评估分数低于50%,质量保证团队已经创建了一条规则,自动向主管发送电子邮件或任务,根据评估结果促进指导机会。

第三个角色Shirley专注于校准,这是代理人绩效评估过程中的一个关键方面。Shirley邀请Carlos参加一个校准会议,以确保评估产品退货电话时保持一致和公平。

Shirley在亚马逊Connect内设置了校准会议,选择要使用的合规性表格,邀请参与者并设置截止日期。所有参与者都会收到包含会议详情和联系记录评估链接的电子邮件通知。Shirley可以监控会议状态和进度,并在所有参与者提交评估后完成会议,在联系记录中访问结果。

演示结束后,来自丰田的Bradley White和Mitch上台分享了他们公司与亚马逊Connect和Contact Lens的合作历程。

Bradley介绍了丰田品牌体验中心,该中心位于雷克萨斯和丰田品牌之间,通过主动、无缝、准确、吸引人和个性化的体验,将两个品牌的愿景和价值观带给客户和团队成员。品牌体验中心支持三大支柱:了解客户,提供个性化体验并预测他们的需求;与经销商合作,创建流程更加简化、解决方案更快的流程;赋能客户服务人员提供无缝的客户服务。

Mitch解释说,丰田公司于2023年6月开始使用Amazon Connect,并已经在使用Contact Lens进行实时转录。然而,来自整个企业的高管都希望了解客户打电话的原因以及他们所面临的问题。丰田公司认识到Contact Lens在提供这些见解方面的价值,无需手动调查客服人员或召开会议。

丰田公司实施了350条Contact Lens规则来分析客户体验,使他们能够收集见解、过滤和分析数据,并利用趋势分析和报告。他们在数据湖之上构建了一个动态的Tableau仪表板,以便快速响应高管的临时请求。

Tableau仪表板提供了有关新兴趋势、产品质量问题以及客户对丰田产品和服务的情绪的见解。例如,当丰田推出新的Land Cruiser时,高管可以了解该产品的接受情况,并解决客户提出的任何新兴质量问题。

此外,Contact Lens还为代理人提供了培训机会,允许主管审查评估结果,并根据确定的需要改进的领域提供针对性反馈。

Mitch分享了Tableau仪表板的屏幕截图,突出显示了它如何显示Contact Lens分析的每个类别的联系数量以及相关指标。该仪表板使丰田能够跟踪特定规则和类别,深入了解单个呼叫,并访问规则生成的转录和标签。

丰田在Contact Lens中实施了四种类型的规则:客户见解(捕获客户情绪和新兴趋势)、产品见解(了解客户对新产品发布的反馈)、移动应用见解(跟踪对丰田移动应用的反馈)和产品质量见解(确定客户报告的感知质量问题)。

这些规则基于关键词搜索,并突出显示了对话的相关部分,从而使丰田能够收集和分析标记的数据以采取行动。Mitch强调了Contact Lens所提供的实时数据见解和快速响应能力,取代了手动编码和客服人员调查流程。

丰田还推出了由生成式AI驱动的对话总结功能,解决了大量转录数据难以由代理人一致总结的挑战。AI生成的总结以简单的语言描述了客户的问题、代理人的回应以及结果,减少了通话后的工作时间,提高了数据质量。

代理人可以附加或编辑总结、对其进行投票或反对,丰田跟踪这些互动以确定培训机会并完善AI模型。对话总结受到了代理人的欢迎,他们认为它们准确且节省时间,丰田的法律团队也认为它们有助于理解互动,而无需依赖内部行话。

丰田采用了“人机协作”的方法,利用生成式AI来增强代理人的任务并提高生产力,同时保持人工监督和控制。

自从实施Amazon Connect和Contact Lens以来,丰田取得了令人印象深刻的成果,包括客户身份验证增加40%、客户自助服务增加4%、IVR时间减少83%、呼叫处理时间减少20%以及转移率降低10%。这些改进不仅降低了劳动力成本,而且通过节省时间和提供更快的解决方案来提高了客户满意度。

展望未来,丰田计划继续完善和扩展其Contact Lens规则、采用来自Amazon的新生成式AI功能、建立规则管理的治理流程,并根据从Contact Lens获得的见解自动采取行动。

Mitch鼓励观众开始尝试使用Contact Lens,设置第一条规则并循序渐进地改进和完善他们的方法,遵循丰田的Kaizen持续改进文化。

总之,这次演示展示了Amazon Connect如何通过AI和分析功能(如Contact Lens和生成式AI)来改革联络中心运营,实现数据驱动的决策、持续改进和个性化的客户体验。丰田的实际实施证明了有效利用这些工具的切实好处和最佳实践,在客户满意度、运营效率和代理人生产力方面取得了令人印象深刻的成果。

下面是一些演讲现场的精彩瞬间:

Kevin Malm,亚马逊Connect产品管理总监,回顾了打造这款亚马逊云科技历史上增长最快服务的非凡历程。

bf873de9c46b39faf6602d02eb1d2be8.png

从一个怀揣宏伟抱负的小团队,发展成为负责一款出色产品的大型团队。

3c42410fde34ebc7a5dea19b8697b87c.png

丰田公司利用丰富的客户数据,并与公司内部各利益相关方分享宝贵见解。

fb922d969b104f3e157f6d4246573f52.png

丰田强调个性化体验、预测客户需求以及赋能员工提供无缝且卓越的客户服务的重要性。

bea6b1bcbc4b389e08622098ded5c0c2.png

丰田解决了利益相关方对使用亚马逊Connect Contact Lens进行高级分析的担忧,强调了其功能以及管理和验证规则以准确识别数据的需求。

59fa3cb2e157c7330247558a19ffb658.png

生成式人工智能以简单语言总结客户互动,提高了整个组织的数据质量和理解能力。

26ee76198a72b5f1d4456e24ed458257.png

总结

在这个引人入胜的叙述中,亚马逊Connect产品管理总监Kevin Malm带领我们一起探索亚马逊这款基于云的呼叫中心解决方案的演进历程。他分享了亚马逊Connect诞生的缘由,源于公司对现有技术的不满意,以及希望提供大规模的出色客户服务体验。

Kevin强调了三个关键的差异化优势,使亚马逊Connect脱颖而出:只需几次点击即可设置功能齐全的呼叫中心、整个平台无缝集成人工智能,以及赋予企业专注于提供卓越客户体验的能力。随后,他揭示了亚马逊Connect面向未来的战略,围绕着一个虚拟循环展开,包括生成洞见、检测异常、提供建议,并基于业务目标实现自我优化。

Alex的演示展现了亚马逊Connect分析套件的强大功能,包括Contact Lens、生成式人工智能和可定制的仪表板。它展示了这些工具如何实现数据驱动的决策、自动联系分类、针对性的质量保证和数据驱动的辅导。丰田的代表Bradley White和Mitch分享了他们与亚马逊Connect的转型之旅,强调了他们如何利用Contact Lens获得实时洞见、推动持续改进并提高客户满意度。

这个叙述以一个行动号召作为结束,鼓励企业拥抱亚马逊Connect的能力,开始尝试Contact Lens规则,并通过Kaizen的理念踏上持续改进之路。它描绘了一个令人信服的愿景,将呼叫中心视为收益中心,由人工智能驱动的分析和自我优化赋能。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值