利用ROI最佳实践加速客户的生成式AI之旅
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon Bedrock, Generative Ai Adoption, Roi Calculation, Business Value, Direct Costs, Indirect Costs]
导读
生成式AI的投资回报率(ROI)考量正成为客户最关注的问题,这对于帮助您支持客户从生成式AI测试阶段过渡到生产工作负载至关重要。在本次会议中,您将学习为客户最大化ROI的最佳实践。通过真实用例示例,探索可以帮助您在整个生成式AI采用过程中计算、优化和开展这些讨论的工具。本次会议专为亚马逊云科技合作伙伴设计。
演讲精华
以下是小编为您整理的本次演讲的精华。
生成式人工智能技术的快速采用令人瞩目,美国公司在上一年度对人工智能的支出是任何其他年度的6倍。这种陡峭的采用曲线在与其他技术相比是前所未有的。风险投资家在过去三年内已向专注于生成式人工智能的初创公司承诺了60亿美元,而这项技术的市场规模预计将从目前的150亿美元增长到2030年的1200亿美元。
这种激增采用的主要原因是,生成式人工智能确实降低了创新的门槛。在生成式人工智能之前,组织试图采用人工智能/机器学习需要足够大的标记数据样本集来为特定任务训练模型。然而,生成式人工智能模型预先训练了预建功能,使它们只需少量良好示例或巧妙的提示和指令即可执行特定任务。这大大降低了进入门槛,使数据重要但不是启动采用之旅的绝对先决条件。
生成式人工智能正在各行业中融入和采用,出现了许多成功的使用案例。公司网站上的“人工智能探索者”一栏突出了这些客户案例。例如,一家零售公司通过使用图像生成技术为时尚产品实现了1.5倍的转化率提升。在药物发现领域,生成式人工智能使新药物在几天内被发现,而传统过程需要数年时间。一家保险公司通过实施生成式人工智能实现了客户服务成本的30%降低。
这些例子凸显了生成式人工智能如何成为各种业务流程和职能的重要组成部分,就像数据对任何业务运营至关重要一样。愿景是让生成式人工智能成为所有业务领域不可或缺的组成部分,就像数据在现代企业中的作用一样。
确定合适的使用案例对于充分发挥生成式人工智能的潜力至关重要。辉瑞公司通过在药物发现、临床试验和研究中采用生成式人工智能实现17种不同使用案例,估计可节省7.5亿至10亿美元的成本,体现了正确使用案例选择的重要性。随着客户和合作伙伴努力确定可行的使用案例并量化潜在投资回报率(ROI),此类案例研究提供了宝贵的见解。
虽然ROI是一个有用的工具,可用于过滤和验证使用案例、获得业务利益相关者的认可并评估整体业务案例,但它并不能本身生成或发现这些使用案例。彻底了解业务、痛点、机遇和战略抱负,以确定最合适和最有价值的使用案例至关重要。辉瑞公司利用生成式人工智能处理药物发现、临床试验和研究中高度计算密集型任务,从而确定了17种使用案例,突出了这一过程。
围绕生成式人工智能的讨论发展迅速。最初,重点是了解这项技术及其功能。然而,现在的讨论已转向量化生成式人工智能实施可以带来的价值。客户在评估使用案例和决定是否投资生成式人工智能时,越来越多地将ROI视为关键因素。正在建立预期ROI的明确基准,这凸显了在使用案例评估过程中采用稳健的方法来评估和理解ROI的重要性。
合作伙伴在协助客户了解和评估整个生成式人工智能采用过程中的ROI方面发挥着至关重要的作用。这一点尤其重要,因为技术、模型及相关定价正在快速发展。ROI不是一次性对话,需要持续重新评估和完善,因为采用之旅正在进行中。随着分析的重复进行,ROI估计的精度应该会提高,以反映生成式人工智能领域的动态性质。
亚马逊云科技合作伙伴由于其深厚的领域知识、亚马逊云科技服务和功能的专业知识,以及参与大多数客户项目的经验,独特地有助于支持客户完成这一任务。超过85%的客户寻求将生成式人工智能采用之旅外包给亚马逊云科技合作伙伴,从使用案例评估到大规模采用、治理和管理。
为了说明ROI评估过程,考虑一个涉及全球餐饮连锁店的使用案例,旨在通过个性化电子邮件营销活动增加现有客户的收入。该过程的三个关键步骤是:1)定义目标(提升客户体验);2)了解当前状态(基线打开率和转化率);3)假设方法(使用生成式人工智能进行个性化电子邮件)。
评估潜在的业务价值是ROI分析的关键组成部分。与其试图精确预测改进情况,不如考虑投资该使用案例所需的最低改进。这可以通过敏感性分析来实现,考虑最佳情况、最坏情况和最可能情况下的潜在收入提升,基于营运指标(如打开率和转化率)的改进情况。
对于餐饮连锁店的使用案例,分析考虑了三种情况:最可能结果的基准案例、乐观改进的上行情况和有限或无增量价值的下行情况。通过调整打开率和转化率指标,三年期内的潜在收入提升范围从440万美元到1820万美元不等。
为了将运营指标转换为美元价值,分析考虑了诸如电子邮件活动中客户数量、打开率(打开电子邮件的客户数量)、转化率(打开电子邮件后到店的客户比例)和平均消费金额等因素。将当前状态情况(20%的打开率,1%的转化率)应用于这些机制,产生了每次活动平均15,000美元的收入。然而,通过生成式人工智能使打开率提高50%(至30%),转化率提高100%(至2%),潜在的每次活动平均收入增加到30,000美元。考虑到每年100次活动,并在三年内进行预测,同时考虑运营指标的持续改进,收入提升就变得相当可观。
评估与生成式人工智能实施相关的直接成本是ROI分析的另一个关键方面。这包括与数据存储、数据清理和准备、所选基础模型、推理选项(基于需求情况)以及任何定制需求(如微调或提示工程)相关的成本。
对于餐饮连锁店的使用案例,直接成本包括数据存储(随着时间的推移积累更多客户数据而增长)、数据清理和准备(前期工作量较大以建立逻辑和机制,之后对持续运营进行自动化)以及基础模型和推理成本(取决于所选模型和推理选项)。
需要注意的是,除了持续的年度成本外,还有与准备长期使用的解决方案、基础设施和架构相关的前期成本。这些前期成本应在评估期(通常为3-4年)内摊销,而不应仅视为与概念验证(POC)阶段相关。
间接成本往往被忽视,但在全面部署时可能占总成本的70%,也是一个重要考虑因素。这些包括构建和维护解决方案所需的工程工作、推动采用的变革管理计划、安全和风险管理(包括负责任的人工智能实践、合规性和人工监督)以及新角色和工作方式的培训和再培训计划。
与直接成本一样,间接成本也有前期和持续的部分,前期成本应在评估期内摊销,而不应视为仅与POC相关的费用。
将业务价值预测与直接和间接成本估算相结合,就可以对不同情况进行ROI分析。对于餐饮连锁店的使用案例,基准案例在三年期内产生了4.09的ROI比率,通过将收入提升(900万美元)除以总成本(220万美元)计算得出。
还强调了一些陷阱和最佳实践,以确保准确估计ROI并成功实施:
- 由于组织准备挑战(如变革管理工作)和数据准备问题(如不完整或不准确的数据需要人工干预),而高估实现价值的速度。
- 由于生成式人工智能具有概率性质(不是100%准确),以及之前的技术(如RPA和经典人工智能/机器学习)可能部分自动化流程,因此高估了潜在价值。
- 过度工程化使用案例,导致成本更高、上市时间更长,这往往是由于工程团队对过度控制、定制和优化的渴望所驱使。建议优先考虑敏捷性和模块化,从最小可行产品开始,并在获得经验教训后逐步增加复杂性。
- 低估了变革管理和员工认同感的重要性,这可能会成为采用的重大障碍,即使技术和投资回报率计算是合理的。及早让业务用户参与、透明地传达假设和潜在结果(包括正面和负面影响)、并提供技能提升机会,有助于克服对变革的抵制。
为了解决这些陷阱,评估投资回报率时需要采用3-4年的多年期视角。这考虑了解决方案扩展到更多场景和客户的情况,以及随着更多反馈和数据的纳入,解决方案的有效性和效率持续改进。虽然初始前期投资可能无法在第一年完全收回,但随着扩展和优化的进行,预计回报将随着时间的推移超过成本。
总之,演讲者提供了一个全面的框架,用于评估生成式人工智能用例的投资回报率,强调了考虑潜在业务价值和直接和间接成本的重要性。他们强调了敏感性分析的必要性,解决组织准备和变革管理挑战,并与经验丰富的供应商合作,以最大限度地提高成功采用和实现投资回报率的机会。全球餐饮连锁店的示例用例展示了这些原则的实际应用,突出了潜在的收入增长,以及投资回报率计算中需要考虑的各种成本组成部分。
下面是一些演讲现场的精彩瞬间:
演讲者感谢并欢迎来自adablus组织的合作伙伴出席。
演讲者强调为特定用例选择合适的基础模型的重要性,并在整个项目生命周期中持续评估和完善ROI(投资回报率)估算。
演讲者强调在部署生成式人工智能模型时,需要考虑各种定制选项(如微调或在提示中提供示例)及其对成本、性能和基础设施的影响。
演讲者强调在评估实施基础模型解决方案的ROI和商业案例时,需要考虑一次性和年度成本,并强调需要将相对较高的一次性成本在长期使用中摊销。
组织通过实验和概念验证,了解自身、人员、数据和技术,为新角色、培训和支持变革的工作方式铺平道路。
演讲者介绍了面向亚马逊云科技合作伙伴的生成式人工智能卓越中心,该中心提供ROI计算器、培训和市场研究洞见,帮助合作伙伴跟上快速发展的人工智能领域。
演讲者鼓励亚马逊云科技合作伙伴和客户利用生成式人工智能卓越中心,了解采用趋势、制定上市策略,并就生成式人工智能采用之旅开展合作。
总结
生成式人工智能的快速采用降低了创新的门槛,使组织能够仅凭几个示例或巧妙的提示就利用预训练模型。然而,确定合适的使用案例并计算投资回报率对于成功实施至关重要。本次演讲探讨了一个真实的使用案例,一家餐饮连锁店利用生成式人工智能进行个性化电子邮件营销活动以提高收入。
重点强调了以下几点:1)仔细评估潜在改进,并跨多种情况进行敏感性分析,以实际估算商业价值。2)考虑所有直接成本,如模型选择、需求概况和定制需求,以及经常被忽视的间接成本,如工程工作、变革管理、安全性和培训。3)认识到投资回报率应在多年时间内评估,因为随着采用规模的扩大和反馈的改进,效率也会提高。
总体信息强调了与能够提供结构化投资回报率评估、识别过高估值或过度工程等陷阱并推动有效变革管理的专家合作的重要性,以实现成功的生成式人工智能采用。通过负责任和迭代的方式投资正确的使用案例,对于实现这项技术的变革潜力至关重要。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。