大数据分析
文章平均质量分 94
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
探索性数据分析 (EDA) 简介
探索性数据分析是研究或理解数据并提取洞察数据集以识别数据模式或主要特征的过程。EDA 通常分为两种方法,即图形分析和非图形分析。原创 2024-10-14 20:29:52 · 1545 阅读 · 0 评论 -
缺失值插补解释:六种插补方法?
让我们谈谈每个数据科学家、分析师或好奇的数字计算者迟早必须处理的事情:缺失值。现在,我知道你在想什么 — “哦,太好了,又一个缺失值指南。但请听我说。我将向您展示如何使用不一种、两种而是六种不同的插补方法来解决这个问题,所有这些都在单个数据集上(还有有用的视觉效果!到最后,您将明白为什么领域知识物有所值(即使是我们的 AI 朋友也可能难以复制)原创 2024-09-04 08:06:13 · 3565 阅读 · 0 评论 -
时间序列分析中的特征提取
在多变量时间序列分析期间,数据包含随时间推移测量的多个数据。为了管理模型性能,建议进行特征提取,以使模型的数据点更加紧凑。原创 2024-08-21 09:42:43 · 1424 阅读 · 0 评论 -
为什么需要合成数据进行机器学习
数据是人工智能的命脉。如果没有高质量的、具有代表性的训练数据,我们的机器学习模型将毫无用处。但是,随着更大的神经网络和更雄心勃勃的人工智能项目对数据的需求越来越大,我们面临着一场危机——现实世界的数据收集和标记根本无法扩展。原创 2024-08-04 00:31:56 · 1897 阅读 · 0 评论 -
揭示生成式 AI 在数据叙事和分析中的影响
在广阔的数据分析领域,改变游戏规则的最深刻的发展之一是生成式人工智能 (GAI)。这是一个激动人心的时刻,人工智能不仅仅是基于历史数据进行处理和预测;它正在创造一些全新的东西,彻底改变数据叙事和分析过程。在最近的一次会议中,我有机会探讨了这项技术创新的基本原理、架构和潜在影响。以下是我们介绍的内容的简明摘要。原创 2024-07-16 01:00:13 · 1968 阅读 · 0 评论 -
了解合成数据的重要性
我们都知道人工智能,不是吗?它正在彻底改变全球的技术格局,预计在未来十年内将大幅增长。随着人工智能在全球各行各业中的存在,不言而喻,我们正在看到一个没有人工智能的生活似乎是不可能的世界。人工智能每天都在使机器变得越来越智能,推动创新,彻底改变人们的工作方式。然而,你脑海中可能有一个问题,大概是这样的:是什么帮助人工智能完成这一切并获得准确的结果?答案很简单,那就是数据。原创 2024-07-15 10:29:16 · 1338 阅读 · 0 评论 -
【统计推断】-01 抽样原理之(六):三个示例
对于抽样问题,前几期文章都是理论探讨。本篇给出若干示例,展现具体的情况下,面对数据,如何给出处理策略。原创 2024-05-06 15:48:52 · 2519 阅读 · 3 评论 -
深度Q-Learning在算法交易中的应用
如果我们让巴甫洛夫的狗接受强化学习训练,而不是猴子来选择最佳投资组合策略,会怎么样?在本文中,强化学习 (RL) 是一种机器学习技术,智能体在不确定的环境中学习动作,以最大化其价值。智能体从其操作的结果中学习,而无需使用特定于任务的规则进行显式编程,原创 2024-04-18 00:09:00 · 1997 阅读 · 0 评论