使用Miro管理复杂的迁移和现代化项目(由Miro赞助)

使用Miro管理复杂的迁移和现代化项目(由Miro赞助)

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, Miro, Complex Migration Projects, Modernization Initiatives, Innovation Workspace, Ai-Powered Collaboration, Cross-Functional Team Management]

导读

在这个简短演讲中,我们将探讨组织在进行迁移和现代化过程中面临的挑战,并了解Miro和亚马逊云科技如何合作加速这些项目。您将看到Miro如何构建定制的亚马逊云科技解决方案,帮助团队管理复杂性、标准化流程并加快项目交付。通过AI驱动的亚马逊云科技模板、与亚马逊云科技集成的高级图表绘制功能以及成本计算器,Miro简化了项目管理,加快了时间进度,并帮助团队实现目标。本次演讲由亚马逊云科技合作伙伴Miro为您呈现。

演讲精华

以下是小编为您整理的本次演讲的精华。

在亚马逊云科技 re:Invent 2024令人着迷的会议上,Miro的亚马逊云科技解决方案工程领导Rich Moore和Miro的战略项目经理Jesse Greenhouse展示了Miro的AI驱动创新工作空间在管理复杂的迁移和现代化项目中的强大功能。他们富有洞察力的演示阐明了团队在开展此类工作时面临的挑战,以及Miro平台如何缓解这些障碍,加速通往云端的旅程。

演讲者首先承认了迁移和现代化计划经常遇到的普遍问题。根据McKinsey的一项研究,高达75%的云迁移项目超出了预算,而38%的项目落后于进度。这一令人震惊的统计数据凸显了对更加精简高效的方法来处理这些关键项目的紧迫需求。

Miro的解决方案在于其协作平台和AI功能,这些已被证明可以带来实实在在的好处。统计数据显示,使用Miro的用户可以将项目完成时间缩短20%,从而节省大量成本,并更快实现与云迁移相关的好处。此外,采用Miro的团队每周每个团队成员平均可节省3.2小时,这是一个巨大的生产力提升,随着时间的推移会产生积累效应。

演讲者随后展示了一系列演示,展现了Miro在亚马逊云科技迁移加速计划的各个阶段的实力。在评估阶段,他们强调了Miro的私密模式,该模式通过匿名贡献来促进无偏见的头脑风暴会议,从而降低了可能在后期阻碍项目进展的偏见风险。此外,Miro AI能够总结头脑风暴笔记中的关键目标,简化了文档流程,节省了宝贵的时间和精力。

进入动员阶段,演讲者展示了Miro与亚马逊云科技的集成,让用户可以访问亚马逊云科技架构图形和模板。这一功能使团队能够实时协作,轻松构建复杂的微服务架构。此外,亚马逊云科技 CloudView集成使现有亚马逊云科技部署可视化,从而实现从传统系统到云端的无缝过渡。

值得注意的是,Miro的亚马逊云科技成本计算器集成允许团队估算不同架构的相关成本,从而实现明智的决策并优化资源分配。在团队权衡利用EC2实例与采用无服务器架构(如Amazon Lambda)之间的权衡时,这一功能显得尤为宝贵。

在迁移阶段,Miro展示了与Jira的双向集成,用户只需几次点击即可将Miro卡片转换为Jira问题。这种无缝集成确保了无论在哪个平台上进行项目更新,都能保持同步,为团队提供了单一的真相来源。Miro的智能小部件进一步增强了项目管理能力,促进了冲刺计划和可视化依赖关系,确保了顺利协调的迁移过程。

在整个演示过程中,Miro的空间和门户功能脱颖而出,使团队能够按时间顺序组织项目内容,并维护一个集中的单一真相来源。这种有结构的项目管理方式消除了数据孤岛,促进了协作,这两个因素对于复杂的迁移和现代化项目的成功至关重要。

演讲者强调了Miro致力于支持亚马逊云科技工作负载和实践,将该平台定位为着手云端之旅的团队不可或缺的助手。他们邀请与会者访问他们的展位,进行更深入的交流,凸显了Miro赋予亚马逊云科技从业人员能力的决心。

总之,在亚马逊云科技 re:Invent 2024上的会议展示了Miro在管理复杂迁移和现代化项目方面的创新方法。通过其AI驱动的创新工作空间、协作功能以及与亚马逊云科技服务的无缝集成,Miro成为了团队加速云端计划、降低风险、减少成本并促进跨职能协作的强大解决方案。

下面是一些演讲现场的精彩瞬间:

Rich Moore,Miro 公司的 亚马逊云科技 解决方案工程领导,在 reInvent2024 活动上介绍了自己和同事 Jesse。

Miro 是一个拥有超过 8000 万用户的人工智能驱动的创新工作空间平台,在 reInvent2024 上展示了其加速创新速度的平台。

Miro 帮助实现有意义的业务成果,根据对 40,000 多名客户的调查,可将项目完成时间缩短 20%。

该团队利用协作白板的功能,如计时器、音乐和私密模式,来促进无偏见的头脑风暴会议,从而就迁移结果达成一致。

敏捷教练审查了团队的回顾,并提出了下一步建议,这些建议可以使用平台强大的功能无缝转化为可执行的任务和项目计划。

演讲者感谢观众出席本次会议,并邀请他们访问展位进一步讨论或通过会议调查提供反馈。

演讲者强调 Mural 的创新工作空间如何能够帮助缓解云项目执行、可视化和利用基础功能方面的挑战,所有这些都是由人工智能在熟悉的智能画布上实现的。

总结

在不断演进的云计算世界中,管理复杂的迁移和现代化项目可能是一项艰巨的任务。Miro作为一个领先的创新工作空间,凭借其人工智能驱动的画布和协作功能,成为简化这些复杂工作的强大助手,为亚马逊云科技的全面潜力释放提供了全面的解决方案。

旅程始于评估阶段,Miro的私密模式在头脑风暴会议期间消除了偏见,确保了无偏见的创意。然后Miro人工智能大显身手,轻松总结关键目标并生成结构化文档,节省了宝贵的时间和精力。借助人工智能助手,回顾变得更加深入,为团队的需求提供了可操作的后续步骤。

随着项目进入Mobilized阶段,Miro的绘图功能、无缝亚马逊云科技集成和成本计算器使团队能够精确地可视化和规划架构。在迁移阶段,Miro与Jira的集成进一步简化了流程,实现了无缝的项目管理和任务跟踪。

Miro的空间和门户将所有项目元素整合到一个统一的工作空间中,促进协作并确保了单一的真相来源。凭借其人工智能驱动的智能和直观的功能,Miro使团队能够以前所未有的效率和敏捷性应对亚马逊云科技迁移和现代化项目的复杂性。

最终,Miro的创新平台为亚马逊云科技从业者提供了一个全面的解决方案,使他们能够加速云计算计划,缩短项目时间,并释放亚马逊云科技的全部潜力。拥抱Miro的力量,踏上通往云计算卓越的转型之旅。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制解调过程通过FFT(快速傅立叶变换)IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据解调原始数据。 Matlab是一种广泛应用于科研、工程数据分析的高级编程语言交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
51单片机是电子工程领域常用的入门级微控制器,广泛应用于小型电子设备,例如电子时钟。本项目将介绍如何利用51单片机设计一款简单的电子时钟,并通过Keil软件进行程序开发,同时借助Proteus仿真工具进行电路模拟,帮助初学者掌握51单片机的基础应用。 51单片机基于Intel 8051内核,集成了CPU、RAM、ROM、定时器/计数器I/O端口等功能模块,具有易于编程性价比高的优势。在电子时钟项目中,主要利用其定时器实现时间的精确计算。Keil μVision是51单片机的常用开发环境,支持C语言汇编语言编程。开发时,需编写代码以控制单片机显示更新时间,包括初始化时钟硬件、设置定时器中断、编写中断服务程序以及与LCD显示屏交互等步骤。关键环节如下:一是初始化,配置时钟源(如外部晶振)设定工作频率;二是定时器设置,选择合适模式(如模式1或模式2),设置计数初值以获得所需时间分辨率;三是中断服务,编写定时器中断服务程序,定时器溢出时更新时间并触发中断;四是显示控制,通过I/O端口驱动LCD显示屏显示当前时间。 Proteus是一款虚拟原型设计软件,可用于模拟硬件电路,帮助开发者在编程前验证电路设计。在Proteus中,可搭建51单片机、LCD模块、晶振及电阻、电容等元件,形成电子时钟电路模型。运行仿真后,可观察程序在实际电路中的运行情况,及时发现并解决问题。 实际项目中,51单片机电子时钟还涉及以下知识点:一是时钟信号产生,定时器通过计数外部时钟脉冲实现时间累计,可通过调整晶振频率定时器初始值设置不同时间间隔;二是LCD接口,需理解LCD的命令数据传输协议,以及如何控制背光、显示模式、行列地址等;三是中断系统,了解中断概念、中断向量及程序中中断的启用禁用方法;四是数码管显示,若使用数码管而非LCD,需了解其显示原理及段选、位选的驱动方式。 本项目融合了单片机基础、
在机器人技术领域,机械臂的避障路径规划是一项关键任务,而本压缩包中的资源专注于利用蚁群算法解决三维空间中的路径规划问题。蚁群算法(Ant Colony Optimization,ACO)是一种仿生优化算法,其灵感来源于蚂蚁在寻找食物时的信息素沉积行为,能够有效找到全局最优解,尤其适合复杂路径规划。 蚁群算法由Marco Dorigo等人提出,模拟蚂蚁寻找食物路径时释放信息素的过程。在算法中,每条可能路径被视作“虚拟”蚂蚁的路径,蚂蚁在移动时会留下信息素。信息素浓度会随时间蒸发,同时被新经过的蚂蚁加强。通过迭代,算法优化路径选择,强化高效路径,最终找到全局最优解。 在机械臂避障路径规划中,三维空间路径规划尤为重要。为此,通常将三维空间划分为网格,每个小格子代表一种状态,如无障碍、障碍或未知。通过判断每个格子的状态,确定机械臂的可行移动区域,即“可视区域”。蚁群算法应用于该三维网格,寻找从起点到终点的最佳路径。每只蚂蚁在网格上随机移动时,会考虑信息素浓度距离因素。高浓度信息素路径更易被选择,短距离路径更具吸引力。经过多次迭代,信息素逐渐积累在最优路径上,从而得出避开障碍物的最短路径。 实际应用中,机械臂路径规划需考虑运动学限制,如关节角度范围、速度限制等,同时实时性也至关重要,算法需快速生成新路径以适应动态环境。因此,蚁群算法常与其他优化方法结合,如遗传算法或粒子群优化,以提升计算效率路径质量。 压缩包内文件可能包含算法源代码、数据结构定义、模拟环境设定及结果可视化等内容。通过这些资源,学习者可深入了解蚁群算法在机械臂避障路径规划中的实现,并直观理解三维路径规划。该应用涉及机器人学、计算机科学、控制理论等多学科交叉,通过仿真项目,既能加深对算法的理解,又能培养解决实际问题的能力。无论是学术研究还是工业应用,掌握这种路径规划方法都极具价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值