这个页面将逐步指导你创建一个自定义节点的过程,该节点接收一批图像并返回其中的一张。最初,该节点将返回平均颜色最浅的图像;然后我们将扩展它以拥有一系列选择标准,最后添加一些客户端代码。
这个页面假设你对Python或JavaScript的了解非常有限。
在这个教程之后,深入了解服务器端代码, 客户端代码,或 客户端-服务器通信。
基本节点
设置
这个自定义节点的所有代码都将放在单个目录中。因此,请首先在您的 ComfyUI
文件夹中找到 custom_nodes
目录,并在其中创建一个新的目录,例如命名为 image_selector
。
这个新目录是所有与新的自定义节点相关的代码的基准目录。
Python 框架
自定义节点的基本结构在稍后详细描述。我们首先从最基本的必需品开始:
class ImageSelector:
CATEGORY = "example"
@classmethod
def INPUT_TYPES(s):
return { "required": { "images": ("IMAGE",), } }
RETURN_TYPES = ("IMAGE",)
自定义节点是一个Python类,它必须包括以下四件事:CATEGORY
,它指定自定义节点在添加新节点菜单中的位置,INPUT_TYPES
,它是一个类方法,定义节点将接受哪些输入(稍后有关返回字典的详细信息,请参阅),RETURN_TYPES
,它定义节点将产生哪些输出,以及FUNCTION
,执行节点时将调用的函数的名称。
请注意,输入和输出的数据类型是IMAGE
(单数),即使我们期望接收一批图像,并且只返回一个。在Comfy中,IMAGE
表示图像批处理,单个图像被视为大小为1的批处理。
添加main函数
main函数choose_image
接收INPUT_TYPES
中定义的命名参数,并返回RETURN_TYPES
中定义的tuple
。由于我们正在处理图像,这些图像在内部存储为torch.Tensor
,
import torch
然后将函数添加到您的类中。图像的数据类型是带有形状的torch.Tensor``[B,H,W,C]
,其中B
是批处理大小,C
是通道数-3,用于RGB。如果我们迭代这样一个张量,我们将得到一系列B
形状张量[H,W,C]
。.flatten()
方法将其转换为一维张量,长度为H*W*C
,torch.mean()
取平均值,.item()
将单个值张量转换为Python浮点数。
def choose_image(self, images):
brightness = list(torch.mean(image.flatten()).item() for image in images)
brightest = brightness.index(max(brightness))
result = images[brightest].unsqueeze(0)
return (result,)
最后两行的注释:
images[brightest]
将返回形状为[H,W,C]
的张量。unsqueeze
用于插入(长度1)维度,在这种情况下,维度为零,给我们[B,H,W,C]
,B=1
:单个图像。- 在
return (result,)
中,尾随逗号对于确保返回元组至关重要。
部署节点
为了让Comfy识别新节点,我们需要通过添加__init__.py
将目录image_selector
转换为Python模块,如下所示:
from .image_selector_node import ImageSelector
NODE_CLASS_MAPPINGS = {
"Image Selector" : ImageSelector,
}
__all__ = ['NODE_CLASS_MAPPINGS']
这里我们只是导出NODE_CLASS_MAPPINGS
,它给每个新的自定义节点一个唯一的名称,映射到类。
运行 Comfy
启动(或重新启动)Comfy服务器,您应该会在自定义节点列表中看到如下一行:
0.0 seconds: [your path]\ComfyUI\custom_nodes\image_selector
在浏览器中重新加载Comfy页面,在Add Node
菜单的example
下,您会找到image_selector
。如果没有,请在Python控制台输出中查找错误!
添加一些选项
那个节点可能有点无聊,所以我们可能会添加一些选项;一个小部件,允许你选择最亮的图像,或者最红、最蓝或最绿。编辑你的Python以添加另一个输入,所以INPUT_TYPES
如下所示:
@classmethod
def INPUT_TYPES(s):
return { "required": { "images": ("IMAGE",),
"mode": (["brightest", "reddest", "greenest", "bluest"],)} }
然后更新main函数。我们将使用一个相当简单的reddest定义,即像素的平均R
值除以所有三种颜色的平均值。所以:
def choose_image(self, images, mode):
batch_size = images.shape[0]
brightness = list(torch.mean(image.flatten()).item() for image in images)
if (mode=="brightest"):
scores = brightness
else:
channel = 0 if mode=="reddest" else (1 if mode=="greenest" else 2)
absolute = list(torch.mean(image[:,:,channel].flatten()).item() for image in images)
scores = list( absolute[i]/(brightness[i]+1e-8) for i in range(batch_size) )
best = scores.index(max(scores))
result = images[best].unsqueeze(0)
return (result,)
调整UI
也许我们想要一点视觉反馈,所以让我们发送一点短信来显示。
从服务器发送消息
这需要在Python代码中添加两行:
from server import PromptServer
并且,在choose_image
方法的末尾,添加一行向前端发送消息(send_sync
需要一个消息类型,应该是唯一的,还有一个字典)
PromptServer.instance.send_sync("example.imageselector.textmessage", {"message":f"Picked image {best+1}"})
return (result,)
编写客户端扩展
要向客户端添加一些Javascript,请在自定义节点目录中创建一个子目录js
,并修改__init__.py
的末尾以通过导出WEB_DIRECTORY
来告诉Comfy:
WEB_DIRECTORY = "./js"
__all__ = ['NODE_CLASS_MAPPINGS', 'WEB_DIRECTORY']
客户端扩展名保存为js
子目录中的.js
文件,因此使用以下代码创建image_selector/js/image_selector.js
。(有关详细信息,请参阅客户端编码)。
import { app } from "../../../scripts/app.js";
import { api } from "../../../scripts/api.js";
app.registerExtension({
name: "example.imageselector",
async setup() {
function messageHandler(event) { alert(event.detail.message); }
api.addEventListener("example.imageselector.textmessage", messageHandler);
},
})
我们所做的只是注册一个扩展,并在其setup()
方法中,为我们发送的消息类型添加了一个侦听器,并读取我们发送的字典(存储在event.detail
中)
停止Comfy服务器,重新启动它,重新加载网页,然后运行您的工作流。