AVL树实现

AVL树的概念

  • AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右⼦树都是AVL树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。
  • AVL树实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1, AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个⻛向标⼀样。

AVL树的插入

插入可能导致失衡
插入时的旋转能确保旋转后的子树高度恢复到插入之前,所以会阻止向上影响平衡,只需旋转就能完成结构调整。

插入的大概过程

  1. 按二叉搜索树规则插入一个值。
  2. 新增结点后,只会影响其祖先的高度,也就是可能影响其部分祖先的平衡因子,所以需要更新从新增结点->根节点路径上的平衡因子,最坏情况更新到根,有些情况更新到中间就停止,在下面具体分析。
  3. 更新平衡因⼦过程中没有出现问题,则插⼊结束
  4. 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。

平衡因子的更新

更新原则:

  • 平衡因⼦ = 右⼦树⾼度-左⼦树⾼度
  • 只有⼦树⾼度变化才会影响当前结点平衡因⼦
  • parent所在⼦树的⾼度是否变化决定了是否会继续往上更新

(***重点)更新停止条件

只有更新后parent的平衡因子为1/-1会继续更新。

  • 更新后parent的平衡因子等于0,parent的左右子树变平衡,以parent为根节点的这棵树的高度不变,所以其祖先的高度和平衡因子不变,停止更新。
  • 更新后parent的平衡因子等于1或-1,更新前平衡,更新后子树高度+1,以parent为根节点的这棵树的高度变化,所以其祖先的高度和平衡因子变化,继续向上更新。
  • 更新后parent的平衡因子等于2或-2,parent的平衡因⼦变化为1->2 或者 -1->-2,说明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,以parent为根节点的这棵树平衡破坏,需要进行旋转处理,旋转的⽬标有两个:1、把parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。旋转后也不需要继续向上更新。
  • 不断更新,更新到根,根的平衡因⼦是1或-1也停⽌了。
    插入后更新平衡因子:
    在这里插入图片描述

旋转

旋转的目的

  1. 将失衡子树恢复平衡
  2. 降低子树高度,避免上层父节点继续失衡
    高度调整:旋转后,子树的高度需恢复到插入前的状态(或至少接近),确保整棵树的高度仍为 O(log n)。
    传播控制:若子树高度未降低,可能导致上层父节点继续失衡,需要递归调整。

失衡的所有情况

  • RR 型:在 parent 的 ** 右子树(R)的右子树(R)** 插入节点,导致失衡。
  • RL 型:在parent的 ** 右子树(R)的左子树(L)** 插入节点,导致失衡。
  • LL 型:在parent的 ** 左子树(L)的左子树(L)** 插入节点,导致失衡。
  • LR 型:在parent 的 ** 左子树(L)的右子树(R)** 插入节点,导致失衡。

(***重点)旋转方式

四种旋转方式分别解决四种失衡情况

右单旋

解决LL型parent的左子树的左子树插入导致失衡情况。
在这里插入图片描述

左单旋

解决RR型parent的右子树的右子树插入导致失衡情况。
在这里插入图片描述
在这里插入图片描述

左右双旋

解决LR型parent的左子树的右子树插入导致失衡情况。
单旋不能解决这种情况
在这里插入图片描述
与单旋不同的是,旋转都是固定的方式,但单旋后的平衡因子只有一种情况,而双旋后的平衡因子由于旋转前subLR平衡因子的三种情况产生了,三种subL和parent三种平衡因子的组合情况。
在这里插入图片描述
subLR的左右子树旋转后分别成为subL的右子树和parent的左子树,因此影响它们的平衡因子
在这里插入图片描述

右左双旋

解决RL型parent的左子树的右子树插入导致失衡情况。
单旋不能解决这种情况
和左右双旋原理相同:

  1. 左旋+右旋
  2. 旋转前subRL的平衡因子情况,导致旋转后parent和subR的平衡因子有三种情况。
    在这里插入图片描述

AVL树完整代码实现

template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int _bf;

	AVLTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		,_bf(0)
	{}
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K,V> Node;
private:
	Node* _root=nullptr;
public:
	bool insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			Node* newnode = new Node(kv);
			_root = newnode;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kv < cur->_kv)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (kv > cur->_kv)
			{
				parent = cur;
				cur = cur->_right;
			}
			else {
				return false;
			}
		}
		//插入
		cur = new Node(kv);
		if (kv < parent->_kv)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else {
			parent->_right = cur;
			cur->_parent = parent;
		}
		//更新平衡因子
		while (parent)
		{
			//先更新本结点平衡因子,后判断是否继续更新
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else if (cur == parent->_right)
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				//停止更新
				return true;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				//parent树高度变化,继续向上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//旋转
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				break;
			}
			else {
				assert(false);
			}
		}
		return true;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (key < cur->_kv.first)
			{
				cur = cur->_left;
			}
			else if (key > cur->_kv.first)
			{
				cur = cur->_right;
			}
			else {
				return cur;
			}
		}
		return nullptr;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}

private:
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return 1 + max(leftHeight, rightHeight);
	}

	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;
		// 计算pRoot结点的平衡因⼦:即pRoot左右⼦树的⾼度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因⼦与pRoot的平衡因⼦不相等,或者
		// pRoot平衡因⼦的绝对值超过1,则⼀定不是AVL树
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "高度差异常" << endl;
			return false;
		}
		if (root->_bf != diff)
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}
		// pRoot的左和右如果都是AVL树,则该树⼀定是AVL树
		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ' ';
		_InOrder(root->_right);
	}

	//右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* parentParent = parent->_parent;

		//执行右旋
		subL->_right = parent;
		parent->_left = subLR;

		//更新父指针
		parent->_parent = subL;
		if (subLR)
			subLR->_parent = parent;
		subL->_parent = parentParent;

		//更新祖父结点的子指针
		if (parentParent)
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;
		}
		else
		{
			_root = subL;
		}
		//更新平衡因子
		subL->_bf = parent->_bf = 0;
	}

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* ppnode = parent->_parent;

		//执行左旋
		parent->_right = subRL;
		subR->_left = parent;

		//更新父指针
		parent->_parent = subR;
		if (subRL)
			subRL->_parent = parent;
		subR->_parent = ppnode;

		//更新祖父结点的子指针
		if (ppnode)
		{
			if (ppnode->_left == parent)
				ppnode->_left = subR;
			else
				ppnode->_right = subR;
		}
		else
		{
			_root = subR;
		}
		//更新平衡因子
		subR->_bf = parent->_bf = 0;
	}

	//左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(subL);
		RotateR(parent);

		//更新平衡因子
		subLR = 0;
		if (bf == 1)
		{
			parent->_bf=0;
			subL->_bf = -1;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
		}
		else {
			assert(false);
		}
	}

	//右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		//双旋
		RotateR(subR);
		RotateL(parent);

		//更新平衡因子
		subRL = 0;
		if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
		}
		else {
			assert(0);
		}
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值