AVL树目录
AVL树的概念
- AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右⼦树都是AVL树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。
- AVL树实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1, AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个⻛向标⼀样。
AVL树的插入
插入可能导致失衡
插入时的旋转能确保旋转后的子树高度恢复到插入之前,所以会阻止向上影响平衡,只需旋转就能完成结构调整。
插入的大概过程
- 按二叉搜索树规则插入一个值。
- 新增结点后,只会影响其祖先的高度,也就是可能影响其部分祖先的平衡因子,所以需要更新从新增结点->根节点路径上的平衡因子,最坏情况更新到根,有些情况更新到中间就停止,在下面具体分析。
- 更新平衡因⼦过程中没有出现问题,则插⼊结束
- 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。
平衡因子的更新
更新原则:
- 平衡因⼦ = 右⼦树⾼度-左⼦树⾼度
- 只有⼦树⾼度变化才会影响当前结点平衡因⼦
- parent所在⼦树的⾼度是否变化决定了是否会继续往上更新
(***重点)更新停止条件
只有更新后parent的平衡因子为1/-1会继续更新。
- 更新后parent的平衡因子等于0,parent的左右子树变平衡,以parent为根节点的这棵树的高度不变,所以其祖先的高度和平衡因子不变,停止更新。
- 更新后parent的平衡因子等于1或-1,更新前平衡,更新后子树高度+1,以parent为根节点的这棵树的高度变化,所以其祖先的高度和平衡因子变化,继续向上更新。
- 更新后parent的平衡因子等于2或-2,parent的平衡因⼦变化为1->2 或者 -1->-2,说明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,以parent为根节点的这棵树平衡破坏,需要进行旋转处理,旋转的⽬标有两个:1、把parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。旋转后也不需要继续向上更新。
- 不断更新,更新到根,根的平衡因⼦是1或-1也停⽌了。
插入后更新平衡因子:

旋转
旋转的目的
- 将失衡子树恢复平衡
- 降低子树高度,避免上层父节点继续失衡
高度调整:旋转后,子树的高度需恢复到插入前的状态(或至少接近),确保整棵树的高度仍为 O(log n)。
传播控制:若子树高度未降低,可能导致上层父节点继续失衡,需要递归调整。
失衡的所有情况
- RR 型:在 parent 的 ** 右子树(R)的右子树(R)** 插入节点,导致失衡。
- RL 型:在parent的 ** 右子树(R)的左子树(L)** 插入节点,导致失衡。
- LL 型:在parent的 ** 左子树(L)的左子树(L)** 插入节点,导致失衡。
- LR 型:在parent 的 ** 左子树(L)的右子树(R)** 插入节点,导致失衡。
(***重点)旋转方式
四种旋转方式分别解决四种失衡情况
右单旋
解决LL型parent的左子树的左子树插入导致失衡情况。

左单旋
解决RR型parent的右子树的右子树插入导致失衡情况。


左右双旋
解决LR型parent的左子树的右子树插入导致失衡情况。
单旋不能解决这种情况

与单旋不同的是,旋转都是固定的方式,但单旋后的平衡因子只有一种情况,而双旋后的平衡因子由于旋转前subLR平衡因子的三种情况产生了,三种subL和parent三种平衡因子的组合情况。

subLR的左右子树旋转后分别成为subL的右子树和parent的左子树,因此影响它们的平衡因子

右左双旋
解决RL型parent的左子树的右子树插入导致失衡情况。
单旋不能解决这种情况
和左右双旋原理相同:
- 左旋+右旋
- 旋转前subRL的平衡因子情况,导致旋转后parent和subR的平衡因子有三种情况。

AVL树完整代码实现
template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
pair<K, V> _kv;
int _bf;
AVLTreeNode(const pair<K, V>& kv)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
,_bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef AVLTreeNode<K,V> Node;
private:
Node* _root=nullptr;
public:
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
Node* newnode = new Node(kv);
_root = newnode;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kv < cur->_kv)
{
parent = cur;
cur = cur->_left;
}
else if (kv > cur->_kv)
{
parent = cur;
cur = cur->_right;
}
else {
return false;
}
}
//插入
cur = new Node(kv);
if (kv < parent->_kv)
{
parent->_left = cur;
cur->_parent = parent;
}
else {
parent->_right = cur;
cur->_parent = parent;
}
//更新平衡因子
while (parent)
{
//先更新本结点平衡因子,后判断是否继续更新
if (cur == parent->_left)
{
parent->_bf--;
}
else if (cur == parent->_right)
{
parent->_bf++;
}
if (parent->_bf == 0)
{
//停止更新
return true;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
//parent树高度变化,继续向上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//旋转
if (parent->_bf == -2 && cur->_bf == -1)
{
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
RotateRL(parent);
}
break;
}
else {
assert(false);
}
}
return true;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (key < cur->_kv.first)
{
cur = cur->_left;
}
else if (key > cur->_kv.first)
{
cur = cur->_right;
}
else {
return cur;
}
}
return nullptr;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBalanceTree()
{
return _IsBalanceTree(_root);
}
private:
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return 1 + max(leftHeight, rightHeight);
}
bool _IsBalanceTree(Node* root)
{
// 空树也是AVL树
if (nullptr == root)
return true;
// 计算pRoot结点的平衡因⼦:即pRoot左右⼦树的⾼度差
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因⼦与pRoot的平衡因⼦不相等,或者
// pRoot平衡因⼦的绝对值超过1,则⼀定不是AVL树
if (abs(diff) >= 2)
{
cout << root->_kv.first << "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_kv.first << "平衡因子异常" << endl;
return false;
}
// pRoot的左和右如果都是AVL树,则该树⼀定是AVL树
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ' ';
_InOrder(root->_right);
}
//右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
Node* parentParent = parent->_parent;
//执行右旋
subL->_right = parent;
parent->_left = subLR;
//更新父指针
parent->_parent = subL;
if (subLR)
subLR->_parent = parent;
subL->_parent = parentParent;
//更新祖父结点的子指针
if (parentParent)
{
if (parentParent->_left == parent)
parentParent->_left = subL;
else
parentParent->_right = subL;
}
else
{
_root = subL;
}
//更新平衡因子
subL->_bf = parent->_bf = 0;
}
//左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* ppnode = parent->_parent;
//执行左旋
parent->_right = subRL;
subR->_left = parent;
//更新父指针
parent->_parent = subR;
if (subRL)
subRL->_parent = parent;
subR->_parent = ppnode;
//更新祖父结点的子指针
if (ppnode)
{
if (ppnode->_left == parent)
ppnode->_left = subR;
else
ppnode->_right = subR;
}
else
{
_root = subR;
}
//更新平衡因子
subR->_bf = parent->_bf = 0;
}
//左右双旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(subL);
RotateR(parent);
//更新平衡因子
subLR = 0;
if (bf == 1)
{
parent->_bf=0;
subL->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subL->_bf = 0;
}
else {
assert(false);
}
}
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
//双旋
RotateR(subR);
RotateL(parent);
//更新平衡因子
subRL = 0;
if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
else if (bf == 0)
{
parent->_bf = 0;
subR->_bf = 0;
}
else {
assert(0);
}
}
};

1145

被折叠的 条评论
为什么被折叠?



