已更新至23年,全国A-5A级景区数据 省市县都包含

1、数据介绍

A级景区分为A-5A不同级别的,是国家对旅游景区质量等级的评级,旅游景区质量等级的标牌和证书有全国旅游景区质量等级评定机构统一规定,A-3A是有国家评定机构委托各省级旅游景区质量等级评定委员会负责评定。

4A级旅游景区由全国景区质量委员会评定,4A级旅游景区一年以上访客申报5A级旅游景区,5A级旅游景区由省级旅游景区质量等级评定委员会推荐,全国旅游景区质量等级评定委员会评定。

数据整理全国A及至5A及各个景区的基本信息景区名称、等级、所属省份城市区县、坐标、地址等。

截止2023年5月份全国31个省份最新A级景区数据,数据样本14847个,不包含港澳台。

数据来源:地方文旅发布整理

2、数据指标

景区名称、等级、所属省份、所属城市、所属区县、地址、当前等级评定时间、相关文件发布时间、坐标(GCJ02)Lng、坐标(GCJ02)Lat、坐标(BD09)Lng、坐标(BD09)Lat、坐标(WGS84)Lng、坐标(WGS84)Latf72652336d6045c9b140c23e1897da19.jpg

a15a57ce815841e1bce84c773d07326f.jpg 

4ca1ed8ec8434694a546372d91b55357.jpg 

 

这是一个多目标优化问题,需要同时考虑景点接待项目数均衡和4A景区至少3个的约束条件。可以采用遗传算法求解该问题。 首先,我们需要定义适应度函数。适应度函数需要计算每组推介方案的总体适应度,其中包括两个子适应度:景点接待项目数均衡和4A景区至少3个。具体计算方式如下: 1. 景点接待项目数均衡:计算每个景点的接待项目数,求出标准差,并将其作为适应度函数的一项。 2. 4A景区至少3个:对于每组推介方案,计算其中4A景区数量,若数量不足3个,则将适应度函数的值设为一个较大的值(比如100)。 将两个子适应度加权求和即为总体适应度。 接下来,我们可以使用MATLAB中的遗传算法工具箱来求解该问题。以下是一份示例代码: ```matlab % 定义景点列和4A景区 spots = 1:55; A4_spots = [1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 24 25 26 27 28 29 30 37 38 39 40 41 42 43]; % 定义遗传算法参数 options = gaoptimset('PopulationSize', 100, 'Generations', 100, 'EliteCount', 10); % 定义适应度函数 fitnessfunc = @(x) fitness(x, spots, A4_spots); % 运行遗传算法 [x, fval] = ga(fitnessfunc, 5*length(spots), [], [], [], [], ones(1,5*length(spots)), 55*ones(1,5*length(spots)), [], options); % 将结果解码成推介方案 routes = decode(x, spots); % 打印推介方案 for i = 1:10 fprintf('推介方案 %d:\n', i); disp(routes(i,:)); end % 定义适应度函数 function f = fitness(x, spots, A4_spots) % 将x解码成推介方案 routes = decode(x, spots); % 计算每个景点的接待项目数 num_projects = zeros(1,55); for i = 1:10 for j = 1:5 num_projects(routes(i,j)) = num_projects(routes(i,j)) + 1; end end % 计算景点接待项目数的标准差 std_num_projects = std(num_projects); % 计算4A景区数量 num_A4_spots = zeros(1,10); for i = 1:10 for j = 1:5 if ismember(routes(i,j), A4_spots) num_A4_spots(i) = num_A4_spots(i) + 1; end end end % 计算4A景区数量不足3个的情况 if sum(num_A4_spots < 3) > 0 f = 100; else f = std_num_projects + sum(num_A4_spots); end end % 将x解码成推介方案 function routes = decode(x, spots) routes = reshape(x, [10,5]); for i = 1:10 [~, idx] = sort(routes(i,:)); routes(i,:) = spots(idx); end end ``` 代码中,我们首先定义了景点列和4A景区,然后使用MATLAB的遗传算法工具箱来求解该问题。其中,遗传算法参数包括种群大小、迭代次数和保留精英的数量。适应度函数需要计算每组推介方案的总体适应度,包括景点接待项目数均衡和4A景区至少3个两个子适应度。最后,我们将优化结果解码成推介方案,并输出结果。 需要注意的是,由于该问题存在多个约束条件,因此遗传算法可能会陷入局部最优解。如果需要更加精确的结果,可以考虑使用其他优化算法,如粒子群算法或模拟退火算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值