详解大模型微调数据集构建方法(持续更新)

  大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

  本文详细介绍了大模型微调数据集构建方法,希望能对学习大模型的同学们有所帮助。

1. 前言

  随着时间的齿轮转动到2024年,各种行业大模型如雨后春笋般涌现。如何基于基座模型领域数据构建行业大模型成为了近期研究和落地的热点方向。因此基于大模型进行微调部署成为了大多数企业的日常操作,但模型微调存在相当的技术门槛,稍有差池或者经验不足极易造成过拟合(严重的灾难性遗忘)、或者欠拟合(无法有效学习特定领域知识)的情形。

在这里插入图片描述

  在之前的文章

评论 61
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值