一、技术定义与核心突破
-
定义:
-
多模态大模型 = 统一架构处理文本、图像、语音、视频等多模态输入/输出的预训练模型
-
与传统单模态模型的本质差异:跨模态语义对齐能力(如"猫"的文本描述与图片特征向量空间一致)
-
- 三大技术支柱
二、典型架构深度对比
三、产业化应用场景
-
智能客服:
-
案例:银行APP通过多模态理解用户上传的"模糊账单截图+语音描述"
-
效果:投诉处理效率提升40%
-
-
工业质检:
-
落地难点:小样本缺陷检测(需Few-shot Learning优化)
-
四、落地挑战与解决方案
-
算力成本:
-
方案:MoE架构动态激活(如Google的Switch Transformer)
-
数据:8xA100训练成本对比(单模态vs多模态)
-
-
数据隐私:
-
联邦学习框架(如NVIDIA FLARE)
-
合成数据生成(Stable Diffusion+LLM增强)
-
-
模型轻量化:技术路线图
五、电商搜索优化案例
-
背景:某跨境电商平台商品搜索准确率低于60%
-
解决方案:以多模态索引构建为例
-
视觉特征:ResNet-50提取主图嵌入
-
文本字段:商品标题+评论摘要
-