字节跳动在 Hugging Face 平台发布 UI-TARS-1.5,这款开源多模态代理基于视觉语言模型,为跨平台 GUI 自动化交互提供高效智能方案,实现 AI 自动化交互领域重大突破。 作为 UI-TARS 系列的全新力作,UI-TARS-1.5 的诞生,填补了当前市场上跨平台自动化交互解决方案的多项空白,无论是开发者寻求高效的自动化工具,还是用户追求便捷的交互体验,都能从中受益。
采用端到端架构的 UI-TARS-1.5,凭借纯视觉输入和多模态指令,打破传统框架局限,能无缝适配桌面、移动端及网页等多环境,重塑自动化交互模式。 传统的图形界面交互系统,往往依赖模块化框架搭建,或是通过手工优化实现特定功能,不仅开发成本高,且灵活性和适应性较差。而 UI-TARS-1.5 仅通过视觉输入,就能实时理解动态界面的变化,结合文本、图像等多模态指令,无论是 Windows、macOS 系统的桌面软件,还是移动 APP、网页端应用,都能精准执行任务指令。
模型具备自然语言操控、多模态感知、跨平台支持和自我学习优化四大核心能力,通过强化推理与记忆功能,显著提升交互效率与任务完成准确性。 例如在自然语言操控方面,用户只需用中文或英文下达简单指令,如 “打开浏览器搜索天气”,模型就能快速响应并执行;多模态感知能力使其能实时解析屏幕截图、文本和图像等输入信息,精准识别界面元素。
UI-TARS-1.5 开源后,依托 GitHub 部署指南及多框架支持,迅速引发 AI 社区关注,其命名源自《星际穿越》TARS 机器人,彰显字节跳动推动 AI 实用化的决心。 字节跳动在 GitHub 上详细公布了模型的部署方法,支持通过 HuggingFace Inference Endpoints 或 vLLM 框架,实现本地和云端的灵活部署。这一开源举措,不仅为全球开发者提供了探索 AI 代理潜力的宝贵资源,也进一步巩固了字节跳动在 AI 领域的领先地位。
各大科技公司极其重视AI发展,现在正是学习AI大模型的最佳时机。