spark-streaming

Spark-Streaming概述

Spark Streaming 用于流式数据的处理。Spark Streaming 支持的数据输入源很多。

和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流作为抽象表示,叫作DStream。

DStream 是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为 RDD 存在,而 DStream 是由这些 RDD 所组成的序列 因此得名“离散化”。

所以简单来将,DStream 就是对 RDD 在实时数据处理场景的一种封装。

Spark-Streaming的特点:易用、容错、易整合到spark体系。

Spark-Streaming架构

Spark-Streaming架构图:

DStream实操

案例一:WordCount案例

需求:使用 netcat 工具向 9999 端口不断的发送数据,通过 SparkStreaming 读取端口数据并统计不同单词出现的次数

实验步骤:

1. 添加依赖

<dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-streaming_2.12</artifactId>
   <version>3.0.0</version>
</dependency>

 

2. 编写代码

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("streaming")
val ssc = new StreamingContext(sparkConf,Seconds(3))

val lineStreams = ssc.socketTextStream("node01",9999)
val wordStreams = lineStreams.flatMap(_.split(" "))
val wordAndOneStreams = wordStreams.map((_,1))
val wordAndCountStreams = wordAndOneStreams.reduceByKey(_+_)
wordAndCountStreams.print()

ssc.start()
ssc.awaitTermination()

3. 启动netcat发送数据

nc -lk 9999

Discretized Stream 是 Spark Streaming 的基础抽象,代表持续性的数据流和经过各种 Spark 原语操作后的结果数据流。在内部实现上,DStream 是一系列连续的 RDD 来表示。每个 RDD 含有 一段时间间隔内的数据。

DStream 创建

创建DStream的三种方式:RDD队列、自定义数据源、kafka数据源

RDD队列

可以通过使用 ssc.queueStream(queueOfRDDs)来创建 DStream,每一个推送到这个队列中的 RDD,都会作为一个DStream 处理。

案例:

需求:循环创建几个 RDD,将 RDD 放入队列。通过 SparkStream 创建 Dstream,计算 WordCount

代码:

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDDStream")
val ssc = new StreamingContext(sparkConf, Seconds(4))

val rddQueue = new mutable.Queue[RDD[Int]]()
val inputStream = ssc.queueStream(rddQueue,oneAtATime = false)
val mappedStream = inputStream.map((_,1))
val reducedStream = mappedStream.reduceByKey(_ + _)
reducedStream.print()

ssc.start()
for (i <- 1 to 5) {
 rddQueue += ssc.sparkContext.makeRDD(1 to 300, 10)
 Thread.sleep(2000)
}
ssc.awaitTermination()

自定义数据源

自定义数据源需要继承 Receiver,并实现 onStart、onStop 方法来自定义数据源采集。

案例:自定义数据源,实现监控某个端口号,获取该端口号内容。

1、自定义数据源

class CustomerReceiver(host:String,port:Int) extends Receiver[String](StorageLevel.MEMORY_ONLY) {
 override def onStart(): Unit = {
   new Thread("Socket Receiver"){
     override def run(): Unit ={
       receive()
     }
   }.start()
 }

 def receive(): Unit ={
   var socket:Socket = new Socket(host,port)
   var input :String = null
   var reader = new BufferedReader(new InputStreamReader(socket.getInputStream,StandardCharsets.UTF_8))

   input = reader.readLine()
   while(!isStopped() && input != null){
     store(input)
     input = reader.readLine()
   }
   reader.close()
   socket.close()

   restart("restart")
 }

 override def onStop(): Unit = {}
}

 

2、使用自定义的数据源采集数据

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("stream")
val ssc = new StreamingContext(sparkConf,Seconds(5))

val lineStream = ssc.receiverStream(new CustomerReceiver("node01",9999))

val wordStream = lineStream.flatMap(_.split(" "))
val wordAndOneStream = wordStream.map((_,1))
val wordAndCountStream = wordAndOneStream.reduceByKey(_+_)
wordAndCountStream.print()

ssc.start()
ssc.awaitTermination()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值